当a,b>0时,求证:根号下((a^2+b^2)/2)≥(a+b)/2≥根号下ab≥2/(1/a+

1/b)如果用均值不等式怎么证明... 1/b)

如果用均值不等式怎么证明
展开
 我来答
tony罗腾
2014-04-15 · 知道合伙人软件行家
tony罗腾
知道合伙人软件行家
采纳数:1381 获赞数:293882
本一类院校毕业,之前参与过百度专家的活动,有网络在线答题的经验,相信我,没错的!

向TA提问 私信TA
展开全部
根号下((a^2+b^2)/2)≥(a+b)/2两边同时平方,移向化解得(a-b)^2/4》0,成立,(a+b)/2≥根号下ab根据不等式公式明显成立2/(1/a+1/b)=2ab/(a+b),所以对于根号下ab≥2/(1/a+1/b)=2ab/(a+b),两边同时除以根号ab,得2根号ab/(a+b)《1,根据不等式原理,a+b》2根号ab,上式成立,所以得证当a,b>0时,求证:根号下((a^2+b^2)/2)≥(a+b)/2≥根号下ab≥2/(1/a+1/b)
更多追问追答
追问
如果两边先不平方先只用均值不等式呢
追答
给个好评吧亲!~
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式