请帮忙解答,初二数学题,谢谢!
2个回答
展开全部
分析:
根据旋转的性质可得△AEB和△ADC全等,根据全等三角形对应角相等可得∠EAB=∠CAD,∠EBA=∠C,再结合等腰三角形三线合一的性质即可推出∠EAB=∠DAB,∠EBA=∠DBA,从而推出∠MBA=∠NBA,然后根据“角边角”证明△AMB和△ANB全等,根据全等三角形对应边相等即可得证.
解答:
证明:∵△AEB由△ADC旋转而得,
∴△AEB≌△ADC,
∴∠EAB=∠CAD,∠EBA=∠C,
∵AB=AC,AD⊥BC,
∴∠BAD=∠CAD,∠ABC=∠C,
∴∠EAB=∠DAB,
∠EBA=∠DBA,
∵∠EBM=∠DBN,
∴∠MBA=∠NBA,
又∵AB=AB,
∴△AMB≌△ANB(ASA),
∴AM=AN.
根据旋转的性质可得△AEB和△ADC全等,根据全等三角形对应角相等可得∠EAB=∠CAD,∠EBA=∠C,再结合等腰三角形三线合一的性质即可推出∠EAB=∠DAB,∠EBA=∠DBA,从而推出∠MBA=∠NBA,然后根据“角边角”证明△AMB和△ANB全等,根据全等三角形对应边相等即可得证.
解答:
证明:∵△AEB由△ADC旋转而得,
∴△AEB≌△ADC,
∴∠EAB=∠CAD,∠EBA=∠C,
∵AB=AC,AD⊥BC,
∴∠BAD=∠CAD,∠ABC=∠C,
∴∠EAB=∠DAB,
∠EBA=∠DBA,
∵∠EBM=∠DBN,
∴∠MBA=∠NBA,
又∵AB=AB,
∴△AMB≌△ANB(ASA),
∴AM=AN.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询