如果△ABC的三边a、b、c满足(a-b)(a^2+b^2)=ac^2-bc^2,则△ABC的形状是
2013-12-17
展开全部
变形得(a-b)(a^2+b^2)=(a-b)c^2,若a!=b,两边同除(a-b),得a^2+b^2=c^2,所以该三角形为直角三角形,且c=90,若a=b,则三角形为等腰三角形,综上容易知道,三角形ABC为直角或等腰三角形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-12-17
展开全部
(a-b)(a^2+b^2)=ac^2-bc^2(a-b)(a^2+b^2)=(a-b)c^2当a=b或者a^2+b^2=c^2第一种是等腰三角形,第二种是直角三角形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-12-17
展开全部
(a-b)(a^2+b^2)=ac^2-bc^2=(a-b)c^2得到 a-b=0 或 a^2+b^2=c^2所以要么是等腰三角形,要么是直角三角形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询