过椭圆x^2/16+y^2/4=1内一点M(2,1)引一条弦,使弦被M点平分,求这条弦所在直线的方
过椭圆x^2/16+y^2/4=1内一点M(2,1)引一条弦,使弦被M点平分,求这条弦所在直线的方程。...
过椭圆x^2/16+y^2/4=1内一点M(2,1)引一条弦,使弦被M点平分,求这条弦所在直线的方程。
展开
1个回答
展开全部
设弦AB,A(x1,y1),B(x2,y2),∵A、B均在椭圆上,∴x1^2/16+y1^2/4=1,(1)x2^2/16+y2^2/4=1,(2)(1)-(2)式,(x1^2-x2^2)/16+(y1^2-y2^2)/4=1,1/4+[(y1-y2)/(x1-x2)]*[(y1+y2)/2]/[(x1+x2)/2]=0,其中(y1-y2)/(x1-x2)为直线的斜率k,(y1+y2)/2,(x1+x2)/2为AB中点M的纵、横坐标,1/4+k*(1/2)=0,∴k=-1/2,∴弦直线方程为:(y-1)/(x-2)=-1/2,即:x+2y-4=0.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询