乘法运算定律是什么????
乘法运算定律:
1、乘法交换律:两个数相乘,交换两个因数的位置,积不变。
用字母表示:a×b=b×a。
2、乘法结合律:三个数相乘,先乘前两个数,或者先乘后两个数,积不变。
用字母表示:(a×b)×c=a×(b×c)。
3、乘法分配律:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。
用字母表示:(a+b)×c=a×c+b×c。
扩展资料
1、乘法分配律的理解:以上几个算式应注意利用乘法的意义进行理解: a + b 个 c 等于 a 个 c 加上 b 个 c ,而不能单纯地依靠记忆,只有这样才能在运算中熟练运用,减少失误。
2、乘法分配律的实质与特点: 实质:利用乘法的意义将算式转化为整十、整百数的乘法运算。 特点: 两个积的和或差, 其中两个积的因数中有一个因数相同; 或两数的和或差乘一个数。
3、运用乘法交换律、乘法结合律简化运算的实质与算式特点实质:把其中相乘结果为整十、整百、整千的两个因数先相乘。通常利用的算式是:2 × 5 = 10 ; 4 × 25 = 100 ; 8 × 125 = 1000 ; 625 × 16 = 10000 ; 25 × 8 = 200 ; 75 × 4 = 300 ; 375 × 8 = 3000。
4、在乘法算式中,当因数中有 25 、 125 等因数,而另外的因数没有 4 或 8 时,可以考虑 将另外的因数分解为两个因数相乘、 其中一个因数为 4 或 8 的形式, 从而利用乘法交换律、 乘法结合律使运算简化。
5、在乘法算式中,如果其中两个因数的积为整十、整百、整千数时,可以运用乘法交换 律、乘法结合律来改变运算顺序,从而简化运算。
参考资料来源:百度百科-乘法运算定律
2024-04-08 广告
整数的乘法运算满足:交换律,结合律, 分配律,消去律。
随着数学的发展, 运算的对象从整数发展为更一般群。
群中的乘法运算不再要求满足交换律。 最有名的非交换例子,就是哈密尔顿发现的四元数群。 但是结合律仍然满足。
1、乘法交换律:ab=ba,注:字母与字母相乘,乘号不用写,或者可以写成·。
2、乘法结合律:(ab)c=a(bc)
3、乘法分配律:(a+b)c=ac+bc
乘法(multiplication),是指将相同的数加起来的快捷方式。其运算结果称为积,“x”是乘号。从哲学角度解析,乘法是加法的量变导致的质变结果。整数(包括负数),有理数(分数)和实数的乘法由这个基本定义的系统泛化来定义。
扩展资料:
乘法的发展:
在各种文明的算术发展过程中,乘法运算的产生是很重要的一步。一个文明可以比较顺利地发展出计数方法和加减法运算,但要想创造一套简单可行的乘法运算方法却不那么容易。
我们目前使用的乘法竖式计算看似简便,实际上这需要我们事先掌握九九乘法口诀表;考虑到这一点,这种竖式计算并不是完美的。
我们即将看到,在数学的发展过程中,不同的文明创造出了哪些不同的乘法运算方法,其中有的运算法甚至可以完全抛弃乘法表。
古巴比伦数学使用60进制,考古发现的一块古巴比伦泥板证实了这一点。这块泥板上有一个正方形,对角线上有四个数字1, 24, 51, 10。最初发现这块泥板时人们并不知道这是什么意思。
后来某牛人惊讶地发现,如果把这些数字当作60进制的三位小数的话,得到的正好是单位正方形对角线长度的近似值:1 + 24/60 + 51/60^2 + 10/60^3 = 1.41421296296... 这说明古巴比伦已经掌握了勾股定理。
参考资料:
2014-09-01
一一得一等