证明函数f(x)=x/x2+1在(0,1)上是增函数

买昭懿007
推荐于2016-03-08 · 知道合伙人教育行家
买昭懿007
知道合伙人教育行家
采纳数:35959 获赞数:160769
毕业于山东工业大学机械制造专业 先后从事工模具制作、设备大修、设备安装、生产调度等工作

向TA提问 私信TA
展开全部
f(x)=x/(x²+1)
x∈(0,1)
令0<x1<x2<1
f(x2)-f(x1)
= x2/(x2²+1) - x1/(x1²+1)
= [ x2(x1²+1) - x1(x2²+1) ] / [(x1²+1)(x2²+1)]
= [(x1² x2+ x2 - x1x2²-x1 ] / [(x1²+1)(x2²+1)]
= [(x1² x2-x1) - (x1x2² - x2)] / [(x1²+1)(x2²+1)]
= [x1(x1x2-1) - x2 (x1x2-1)] / [(x1²+1)(x2²+1)]
= [(x1x2-1)(x1- x2)] / [(x1²+1)(x2²+1)]
∵0<x1<x2<1
∴x1x2-1<0;x1- x2<0;(x1²+1)(x2²+1)>0
∴ [(x1x2-1)(x1- x2)] / [(x1²+1)(x2²+1)]>0
∴f(x2)>f(x1),得证。
tllau38
高粉答主

2014-07-24 · 关注我不会让你失望
知道顶级答主
回答量:8.7万
采纳率:73%
帮助的人:2亿
展开全部
f(x)=x/(x^2+1)
f'(x) =(x^2+1- 2x^2 )/(x^2+1)^2
= (-x^2+1)/(x^2+1)^2 >0 ;x 在(0,1)

=>f(x)=x/(x^2+1) 在(0,1)上是增函数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式