证明函数f(x)=x/x2+1在(0,1)上是增函数
2个回答
推荐于2016-03-08 · 知道合伙人教育行家
关注
展开全部
f(x)=x/(x²+1)
x∈(0,1)
令0<x1<x2<1
f(x2)-f(x1)
= x2/(x2²+1) - x1/(x1²+1)
= [ x2(x1²+1) - x1(x2²+1) ] / [(x1²+1)(x2²+1)]
= [(x1² x2+ x2 - x1x2²-x1 ] / [(x1²+1)(x2²+1)]
= [(x1² x2-x1) - (x1x2² - x2)] / [(x1²+1)(x2²+1)]
= [x1(x1x2-1) - x2 (x1x2-1)] / [(x1²+1)(x2²+1)]
= [(x1x2-1)(x1- x2)] / [(x1²+1)(x2²+1)]
∵0<x1<x2<1
∴x1x2-1<0;x1- x2<0;(x1²+1)(x2²+1)>0
∴ [(x1x2-1)(x1- x2)] / [(x1²+1)(x2²+1)]>0
∴f(x2)>f(x1),得证。
x∈(0,1)
令0<x1<x2<1
f(x2)-f(x1)
= x2/(x2²+1) - x1/(x1²+1)
= [ x2(x1²+1) - x1(x2²+1) ] / [(x1²+1)(x2²+1)]
= [(x1² x2+ x2 - x1x2²-x1 ] / [(x1²+1)(x2²+1)]
= [(x1² x2-x1) - (x1x2² - x2)] / [(x1²+1)(x2²+1)]
= [x1(x1x2-1) - x2 (x1x2-1)] / [(x1²+1)(x2²+1)]
= [(x1x2-1)(x1- x2)] / [(x1²+1)(x2²+1)]
∵0<x1<x2<1
∴x1x2-1<0;x1- x2<0;(x1²+1)(x2²+1)>0
∴ [(x1x2-1)(x1- x2)] / [(x1²+1)(x2²+1)]>0
∴f(x2)>f(x1),得证。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询