已知函数f=loga1-mx/x-1的图像关于原点对称.1,求m的值
1个回答
推荐于2016-05-29 · 知道合伙人教育行家
关注
展开全部
f(x) = loga[(1-mx)/(x-1)]
关于原点对称:f(-x) = -f(x)
loga[(1+mx)/(-x-1)] = - loga[(1-mx)/(x-1)]
loga[(1+mx)/(-x-1)] + loga[(1-mx)/(x-1)] = 0
loga[(1+mx)/(-x-1)*(1-mx)/(x-1)] = 0
(1+mx)/(-x-1)*(1-mx)/(x-1) = 1
1-m²x² = 1-x²
m² = 1
m = 1时,真数 = (1-x)/(x-1)<0,无意义
∴m = -1
关于原点对称:f(-x) = -f(x)
loga[(1+mx)/(-x-1)] = - loga[(1-mx)/(x-1)]
loga[(1+mx)/(-x-1)] + loga[(1-mx)/(x-1)] = 0
loga[(1+mx)/(-x-1)*(1-mx)/(x-1)] = 0
(1+mx)/(-x-1)*(1-mx)/(x-1) = 1
1-m²x² = 1-x²
m² = 1
m = 1时,真数 = (1-x)/(x-1)<0,无意义
∴m = -1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询