3个回答
展开全部
Cauchy不等式的形式化写法就是:
记两列数分别是ai, bi,则有 (∑ai^2) * (∑bi^2) ≥ (∑ai *bi)^2.
令 f(x) = ∑(ai + x * bi)^2 = (∑bi^2) * x^2 + 2 * (∑ai * bi) * x + (∑ai^2)
则恒有 f(x) ≥ 0.
用二次函数无实根或只有一个实根的条件,就有 Δ = 4 * (∑ai * bi)^2 - 4 * (∑ai^2) * (∑bi^2) ≤ 0.
于是移项得到结论。
还可以用向量来证.
m=(a1,a2......an) n=(b1,b2......bn)
mn=a1b1+a2b2+......+anbn=(a1^+a2^+......+an^)^1/2乘以(b1^+b2^+......+bn^)^1/2乘以cosX.
因为cosX小于等于1,所以:a1b1+a2b2+......+anbn小于等于a1^+a2^+......+an^)^1/2乘以(b1^+b2^+......+bn^)^1/2
这就证明了不等式.
记两列数分别是ai, bi,则有 (∑ai^2) * (∑bi^2) ≥ (∑ai *bi)^2.
令 f(x) = ∑(ai + x * bi)^2 = (∑bi^2) * x^2 + 2 * (∑ai * bi) * x + (∑ai^2)
则恒有 f(x) ≥ 0.
用二次函数无实根或只有一个实根的条件,就有 Δ = 4 * (∑ai * bi)^2 - 4 * (∑ai^2) * (∑bi^2) ≤ 0.
于是移项得到结论。
还可以用向量来证.
m=(a1,a2......an) n=(b1,b2......bn)
mn=a1b1+a2b2+......+anbn=(a1^+a2^+......+an^)^1/2乘以(b1^+b2^+......+bn^)^1/2乘以cosX.
因为cosX小于等于1,所以:a1b1+a2b2+......+anbn小于等于a1^+a2^+......+an^)^1/2乘以(b1^+b2^+......+bn^)^1/2
这就证明了不等式.
展开全部
孩子,这道题,我来吧。
[(a+b)+(b+c)+(c+a)][1/(a+b)+1/(b+c)+1/(c+a)]>=[(a+b)*1/(a+b)+(b+c)*1/(b+c)+(c+a)*1/(c+a)]^2=3^2=9
那么就可以得到2(a+b+c)*[1/(a+b)+1/(b+c)+1/(c+a)]>=9
接着
就。
2/(a+b)+2/(b+c)+2/(c+a)>=9/(a+b+c)
你看看吧。,,看懂了就给我五颗星哦
,,,一定哦。。。
[(a+b)+(b+c)+(c+a)][1/(a+b)+1/(b+c)+1/(c+a)]>=[(a+b)*1/(a+b)+(b+c)*1/(b+c)+(c+a)*1/(c+a)]^2=3^2=9
那么就可以得到2(a+b+c)*[1/(a+b)+1/(b+c)+1/(c+a)]>=9
接着
就。
2/(a+b)+2/(b+c)+2/(c+a)>=9/(a+b+c)
你看看吧。,,看懂了就给我五颗星哦
,,,一定哦。。。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询