已知抛物线y=ax2-2ax+c与y轴交于C点,与x轴交于A、B两点,点A的坐标是(-1,0),O是坐标原点,且|OC|=3|

已知抛物线y=ax2-2ax+c与y轴交于C点,与x轴交于A、B两点,点A的坐标是(-1,0),O是坐标原点,且|OC|=3|OA|(1)求抛物线的函数表达式;(2)直接... 已知抛物线y=ax2-2ax+c与y轴交于C点,与x轴交于A、B两点,点A的坐标是(-1,0),O是坐标原点,且|OC|=3|OA|(1)求抛物线的函数表达式;(2)直接写出直线BC的函数表达式;(3)如图1,D为y轴的负半轴上的一点,且OD=2,以OD为边作正方形ODEF.将正方形ODEF以每秒1个单位的速度沿x轴的正方向移动,在运动过程中,设正方形ODEF与△OBC重叠部分的面积为s,运动的时间为t秒(0<t≤2).求:①s与t之间的函数关系式;②在运动过程中,s是否存在最大值?如果存在,直接写出这个最大值;如果不存在,请说明理由.(4)如图2,点P(1,k)在直线BC上,点M在x轴上,点N在抛物线上,是否存在以A、M、N、P为顶点的平行四边形?若存在,请直接写出M点坐标;若不存在,请说明理由. 展开
 我来答
手机用户52403
推荐于2016-08-24 · 超过73用户采纳过TA的回答
知道答主
回答量:120
采纳率:0%
帮助的人:166万
展开全部
(1)∵A(-1,0),|OC|=3|OA|
∴C(0,-3)
∵抛物线经过A(-1,0),
C(0,-3)
c=?3
(?1)2×a?2a×(?1)+c=0

a=1
c=?3

∴y=x2-2x-3.

(2)由(1)的抛物线知:点B(3,0);
设直线BC的解析式为:y=kx-3,代入B点坐标,得:
3k-3=0,解得 k=1
∴直线BC的函数表达式为y=x-3.

(3)当正方形ODEF的顶点D运动到直线BC上时,设D点的坐标为(m,-2),
根据题意得:-2=m-3,∴m=1.
①当0<t≤1时,正方形和△OBC的重合部分是矩形;
∵OO1=t,OD=2
∴S1=2t;
当1<t≤2时,正方形和△OBC的重合部分是五边形,如右图;
∵OB=OC=3,∴△OBC、△D1GH都是等腰直角三角形,∴D1G=D1H=t-1;
S2=S矩形DD1O1O-S△D1HG=2t-
1
2
×(t-1)2=-
1
2
t2+3t-
1
2

②由①知:
当0<t≤1时,S=2t的最大值为2;
当1<t≤2时,S=-
1
2
t2+3t-
1
2
=-
1
2
(t-3)2+4,由于未知数的取值范围在对称轴左侧,且抛物线的开口向下;
∴当t=2时,函数有最大值,且值为 S=-
1
2
+4=
7
2
>2.
综上,当t=2秒时,S有最大值,最大值为 
7
2


(4)由(2)知:点P(1,-2).假设存在符合条件的点M;
①当AM<
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消
.