(1)如图1,四边形ACDG与四边形ECBH都是正方形,且B,C,D在一条直线上,连接DE并延长交线段AB于点F.求

(1)如图1,四边形ACDG与四边形ECBH都是正方形,且B,C,D在一条直线上,连接DE并延长交线段AB于点F.求证:AB=DE,AB⊥DE;(2)如果将(1)中的两个... (1)如图1,四边形ACDG与四边形ECBH都是正方形,且B,C,D在一条直线上,连接DE并延长交线段AB于点F.求证:AB=DE,AB⊥DE;(2)如果将(1)中的两个正方形换成两个矩形,如图2,且ACCD=BCCE=3,则AB与DE的数量关系与位置关系会发生什么变化?请说明你的看法和理由.(3)如果将(1)中的两个正方形换成两个直角三角形,如图3,∠BCE=∠ACD=90°,且ACCD=BCCE=k,且请直接写出AB与DE的数量关系与位置关系. 展开
 我来答
祖国万岁PV57C
2015-01-19 · TA获得超过127个赞
知道答主
回答量:95
采纳率:0%
帮助的人:100万
展开全部
解答:证明:(1)在△ABC和△DEC中,
AC=DC
∠ACB=∠DCE=90°
BC=EC

∴△ABC≌△DEC(SAS).           
∴AB=DE,∠BAC=∠EDC.
∵∠BAC+∠ABC=90°,
∴∠EDC+∠ABC=90°.
∴∠BFD=90°.
∴AB⊥DE.                        
(2)AB=
3
DE,AB⊥DE.               
AC
CD
BC
CE
3
,∠ACB=∠DCE=90°,
∴△ABC∽△DEC.
AB
DE
3
,∠BAC=∠EDC.
∵∠BAC+∠ABC=90°,
∴∠EDC+∠ABC=90°.
∴∠BFD=90°.
∴AB⊥DE.                           
(3)∵
AC
CD
BC
CE
=k,∠ACB=∠ACD
∴△ABC∽△DEC,
AB
DE
=
AC
CD
=k,∠BAC=∠CDE,
又∵∠AEF=∠CED,AC⊥CD,
∴∠BAC+∠AEF=∠DEC+∠CDE=90°
∴∠AFE=90°,
∴AB⊥DE
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式