
limx趋近于无穷(1/根号下n2+1+1/根号下n2+2+...+1/根号下n2+n))
2个回答
展开全部
上式=lim(1+2+...+n)/(n^2+1)=lim[n(n+1)/2]/(n^2+1)=1/2 lim[(n^2+n)/(n^2+1)] = 1/2*1 = 1/2。
所谓极限的思想,是指“用极限概念分析问题和解决问题的一种数学思想”。
用极限思想解决问题的一般步骤可概括为:
对于被考察的未知量,先设法正确地构思一个与它的变化有关的另外一个变量,确认此变量通过无限变化过程的’影响‘趋势性结果就是非常精密的约等于所求的未知量;用极限原理就可以计算得到被考察的未知量的结果。
与一切科学的思想方法一样,极限思想也是社会实践的大脑抽象思维的产物。极限的思想可以追溯到古代,例如,祖国刘徽的割圆术就是建立在直观图形研究的基础上的一种原始的可靠的“不断靠近”的极限思想的应用。
古希腊人的穷竭法也蕴含了极限思想,但由于希腊人“对’无限‘的恐惧”,他们避免明显地人为“取极限”,而是借助于间接证法——归谬法来完成了有关的证明。
到了16世纪,荷兰数学家斯泰文在考察三角形重心的过程中,改进了古希腊人的穷竭法,他借助几何直观,大胆地运用极限思想思考问题,放弃了归缪法的证明。如此,他就在无意中“指出了把极限方法发展成为一个实用概念的方向”。
展开全部
应为 n 趋近于无穷 !
记 A = 1/√(n^2+1)+1/√(n^2+2)+...+1/√(n^2+n),
B = 1/√(n^2+1)+1/√(n^2+1)+...+1/√(n^2+1)= n/√(n^2+1),
C = 1/√(n^2+n)+1/√(n^2+n)+...+1/√(n^2+n) = n/√(n^2+n),
则 C<A<B, n→∞ 时, B,C 的极限均为1,则
lim<n→∞>[1/√(n^2+1)+1/√(n^2+2)+...+1/√(n^2+n)] = 1.
记 A = 1/√(n^2+1)+1/√(n^2+2)+...+1/√(n^2+n),
B = 1/√(n^2+1)+1/√(n^2+1)+...+1/√(n^2+1)= n/√(n^2+1),
C = 1/√(n^2+n)+1/√(n^2+n)+...+1/√(n^2+n) = n/√(n^2+n),
则 C<A<B, n→∞ 时, B,C 的极限均为1,则
lim<n→∞>[1/√(n^2+1)+1/√(n^2+2)+...+1/√(n^2+n)] = 1.
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询