已知函数f(x)为R上的奇函数,且f(1)=-1,对任意a,b∈R,a+b≠0,有f(a)+f(b)a+b<0.(1)判断函数f
已知函数f(x)为R上的奇函数,且f(1)=-1,对任意a,b∈R,a+b≠0,有f(a)+f(b)a+b<0.(1)判断函数f(x)在R上的单调性,并证明你的结论;(2...
已知函数f(x)为R上的奇函数,且f(1)=-1,对任意a,b∈R,a+b≠0,有f(a)+f(b)a+b<0.(1)判断函数f(x)在R上的单调性,并证明你的结论;(2)解关于x的不等式f[k(1?x)x?2]<1(0≤k<1).
展开
展开全部
(1)由函数f(x)为R上的奇函数,得f(0)=0,
又已知f(1)=-1,所以函数f(x)在R上的单调递减.
证明:令任意x1,x2∈R,x1<x2,在已知中,取a=x1,b=-x2,则
<0,
∵函数f(x)为R上的奇函数,∴f(-x2)=-f(x2),
又x1-x2<0,
∴f(x1)-f(x2)<0,即f(x1)<f(x2).
∴函数f(x)在R上的单调递减;
(2)∵1=-f(1)=f(-1)
∴由f[
]<1,得:f[
]<f(?1)
∵函数f(x)在R上的单调递减
∴
>?1,即:
>0
∴当0<k<1时,不等式的解集为{x|x<2或x>
};
当k=0时,不等式的解集为{x|x≠2}.
又已知f(1)=-1,所以函数f(x)在R上的单调递减.
证明:令任意x1,x2∈R,x1<x2,在已知中,取a=x1,b=-x2,则
f(x1)+f(?x2) |
x1?x2 |
∵函数f(x)为R上的奇函数,∴f(-x2)=-f(x2),
又x1-x2<0,
∴f(x1)-f(x2)<0,即f(x1)<f(x2).
∴函数f(x)在R上的单调递减;
(2)∵1=-f(1)=f(-1)
∴由f[
k(1?x) |
x?2 |
k(1?x) |
x?2 |
∵函数f(x)在R上的单调递减
∴
k(1?x) |
x?2 |
(1?k)x+k?2 |
x?2 |
∴当0<k<1时,不等式的解集为{x|x<2或x>
2?k |
1?k |
当k=0时,不等式的解集为{x|x≠2}.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询