如图,在Rt△ABC中,∠ACB=90°,AC=6㎝,BC=8㎝,P为BC的中点.动点Q从点P出发,沿射线PC方向以2㎝/s的

如图,在Rt△ABC中,∠ACB=90°,AC=6㎝,BC=8㎝,P为BC的中点.动点Q从点P出发,沿射线PC方向以2㎝/s的速度运动,以P为圆心,PQ长为半径作圆.设点... 如图,在Rt△ABC中,∠ACB=90°,AC=6㎝,BC=8㎝,P为BC的中点.动点Q从点P出发,沿射线PC方向以2㎝/s的速度运动,以P为圆心,PQ长为半径作圆.设点Q运动的时间为t s.⑴当t=1.2时,判断直线AB与⊙P的位置关系,并说明理由;⑵已知⊙O为△ABC的外接圆,若⊙P与⊙O相切,求t的值. 展开
 我来答
vrsnglag
推荐于2016-03-08 · 超过87用户采纳过TA的回答
知道答主
回答量:141
采纳率:0%
帮助的人:164万
展开全部
解:⑴直线 与⊙P相切.

如图,过点P作PD⊥AB, 垂足为D.
在Rt△ABC中,∠ACB=90°,∵AC=6cm,BC=8cm,
.∵P为BC的中点,∴PB=4cm.
∵∠PDB=∠ACB=90°,∠PBD=∠ABC.∴△PBD∽△ABC.
,即 ,∴PD ="2.4(cm)" .
时, (cm) 
,即圆心 到直线 的距离等于⊙P的半径.
∴直线 与⊙P相切.
⑵∠ACB=90°,∴AB为△ABC的外切圆的直径.∴
连接OP.∵P为BC的中点,∴
∵点P在⊙O内部,∴⊙P与⊙O只能内切.
,∴ =1或4. 
∴⊙P与⊙O相切时,t的值为1或4.

本试题主要是考查了圆内的性质的运用,以及直线与圆的为何只关系 的综合运用。
(1)当t=1.2时,要判断直线AB与⊙P的位置关系,只要求解圆心到直线的距离与圆的半径的关系即可以得到。
(2)⊙O为△ABC的外接圆,若⊙P与⊙O相切,则可以考虑是相互外切还是相互内切的情况,根据圆心距和半径的关系得到
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式