1-cosx的等价无穷小
不知道这种办法对不对,希望大神们看看。(不想用泰勒公式)1-cosx=1-(1-2sin^2x/2)=2sin^2x/2因为sinx/2~x/2,所以1-cosx的等价无...
不知道这种办法对不对,希望大神们看看。(不想用泰勒公式)
1-cosx=1-(1-2sin^2x/2)=2sin^2x/2 因为sinx/2~x/2,所以1-cosx的等价无穷小为2*(x/2)^2,化简得1/2x^2
看了很多网上别人的解法,感觉有点麻烦。 展开
1-cosx=1-(1-2sin^2x/2)=2sin^2x/2 因为sinx/2~x/2,所以1-cosx的等价无穷小为2*(x/2)^2,化简得1/2x^2
看了很多网上别人的解法,感觉有点麻烦。 展开
网易云信
2023-12-06 广告
2023-12-06 广告
UIkit是一款轻量级、模块化、基于jQuery的UI框架,它提供了大量易于使用的UI组件,包括按钮、表单、表格、对话框、通知等等。UIkit的设计理念是尽可能地简洁和灵活,开发者可以根据自己的需求自由地选择需要的组件和样式,从而快速构建出...
点击进入详情页
本回答由网易云信提供
展开全部
1-√cosx的等价无穷小:x^2/4。
分析过程如下:
利用cosx=1-x^2/2+o(x^2) (1)以及
(1+x)^(1/2)=1+x/2+o(x) (2)得:
1-√cosx
=1-(1+cosx-1)^(1/2)恒等变形
=1-(1+(cosx-1)/2)+o(cosx-1)利用(2)式。
=(1-cosx)/2+o(x^2)利用(1)式。
=x^2/4+o(x^2)
极限的由来
与一切科学的思想方法一样,极限思想也是社会实践的大脑抽象思维的产物。极限的思想可以追溯到古代,例如,祖国刘徽的割圆术就是建立在直观图形研究的基础上的一种原始的可靠的“不断靠近”的极限思想的应用。
古希腊人的穷竭法也蕴含了极限思想,但由于希腊人“对’无限‘的恐惧”,他们避免明显地人为“取极限”,而是借助于间接证法——归谬法来完成了有关的证明。
到了16世纪,荷兰数学家斯泰文在考察三角形重心的过程中,改进了古希腊人的穷竭法,他借助几何直观,大胆地运用极限思想思考问题,放弃了归缪法的证明。如此,他就在无意中“指出了把极限方法发展成为一个实用概念的方向”。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
答:
用二倍角公式:
cos2a=1-2sin²a
1-cos2a=2sin²a
所以:
1-cosx=2sin²(x/2)~2×(x/2)²~x²/2
所以:
1-cosx的等价无穷小为x²/2
用二倍角公式:
cos2a=1-2sin²a
1-cos2a=2sin²a
所以:
1-cosx=2sin²(x/2)~2×(x/2)²~x²/2
所以:
1-cosx的等价无穷小为x²/2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
不知你看到网上的是什么复杂方法。这种办法 对,就该这样做。
1-cosx的等价无穷小是 x²/2
只要当x→0时,(1-cosx)/(x²/2) → 1,就说明两者为等价无穷小。
1-cosx的等价无穷小是 x²/2
只要当x→0时,(1-cosx)/(x²/2) → 1,就说明两者为等价无穷小。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |