如图,在平面直角坐标系中,点0为坐标原点,直线y=2x+4交x轴于点A,交y轴于点B,四边形ABCO是平行四边形
如图,在平面直角坐标系中,点0为坐标原点,直线y=2x+4交x轴于点A,交y轴于点B,四边形ABCO是平行四边形,直线y=-x+m经过点C,交x轴于点D.(1)求m的值;...
如图,在平面直角坐标系中,点0为坐标原点,直线y=2x+4交x轴于点A,交y轴于点B,四边形ABCO是平行四边形,直线y=-x+m经过点C,交x轴于点D.(1)求m的值;(2)点P(0,t)是线段OB上的一个动点(点P不与0,B两点重合),过点P作x轴的平行线,分别交AB,0c,DC于点E,F,G.设线段EG的长为d,求d与t之间的函数关系式 (直接写出自变量t的取值范围); (3)在(2)的条件下,点H是线段OB上一点,连接BG交OC于点M,当以OG为直径的圆经过点M时,恰好使∠BFH=∠ABO.求此时t的值及点H的坐标.
展开
拱天禄0In
推荐于2016-05-12
·
TA获得超过132个赞
关注
(1)m=6(2)d=- t+8(0<t<4)(3)t=2,H(0, ) |
解:(1)如图,过点C作CK⊥x轴于K, ∵y=2x+4交x轴和y轴于A,B, ∴A(-2,0)B(0,4)。∴OA=2,OB=4。 ∵四边形ABCO是平行四边形,∴BC="OA=2" 。 又∵四边形BOKC是矩形, ∴OK=BC=2,CK=OB=4。∴C(2,4)。 将C(2,4)代入y=-x+m得,4=-2+m,解得m=6。 (2)如图,延长DC交y轴于N,分别过点E,G作x轴的垂线 垂足分别是R,Q, 则四边形ERQG、四边形POQG、四边形EROP是矩形。 ∴ER=PO=CQ=1。 ∵ ,即 ,∴AR= t。 ∵y=-x+6交x轴和y轴于D,N,∴OD=ON=6。 ∴∠ODN=45°。 ∵ ,∴DQ=t。 又∵AD=AO+OD=2+6=8,∴EG=RQ=8- t-t=8- t。 ∴d=- t+8(0<t<4)。 (3)如图, ∵四边形ABCO是平行四边形, ∴AB∥OC。∴∠ABO=∠BOC。 ∵BP=4-t, ∴ 。 ∴EP= 。 由(2)d=- t+8,∴PG=d-EP=6-t。 ∵以OG为直径的圆经过点M,∴∠OMG=90°,∠MFG=∠PFO。∴∠BGP=∠BOC。 ∴ 。∴ ,解得t=2。 ∵∠BFH=∠ABO=∠BOC,∠OBF=∠FBH,∴△BHF∽△BFO。 ∴ ,即BF 2 =BH?BO。 ∵OP=2,∴PF=1,BP=2。∴ 。 ∴ =BH×4。∴BH= 。∴HO=4- 。 ∴H(0, )。 (1)根据直线y=2x+4求出点A、B的坐标,从而得到OA、OB的长度,再根据平行四边形的对边相等求出BC的长度,过点C作CK⊥x轴于K,从而得到四边形BOKC是矩形,根据矩形的对边相等求出KC的长度,从而得到点C的坐标,然后把点C的坐标代入直线即可求出m的值。 (2)延长DC交y轴于N分别过点E,G作x轴的垂线 垂足分别是R,Q则四边形ERQG、四边形POQG、四边形EROP是矩形,再利用∠BAO的正切值求出AR的长度,利用∠ODN的正切值求出DQ的长度,再利用AD的长度减去AR的长度,再减去DQ的长度,计算即可得解。 (3)根据平行四边形的对边平行可得AB∥OC,再根据平行线内错角相等求出∠ABO=∠BOC,用t表示出BP,再根据∠ABO与∠BOC的正切值相等列式求出EP的长度,再表示出PG的长度,然后根据直径所对的圆周角是直角可得∠OMC=90°,根据直角推出∠BGP=∠BOC,再利用∠BGP与∠BOC的正切值相等列式求解即可得到t的值;先根据加的关系求出∠OBF=∠FBH,再判定△BHF和△BFO相似,根据相似三角形对应边成比例可得 ,再根据t=2求出OP=2,PF=1,BP=2,利用勾股定理求出BF的长度,代入数据进行计算即可求出BH的值,然后求出HO的值,从而得到点H的坐标。 |
收起
为你推荐: