已知函数f(x)=ax2+bx+c(a,b,c为实数,a≠0),定义域D:[-1,1](1)当a=1,b=-1时,若函数f(x)在
已知函数f(x)=ax2+bx+c(a,b,c为实数,a≠0),定义域D:[-1,1](1)当a=1,b=-1时,若函数f(x)在定义域内恒小于零,求c的取值范围;(2)...
已知函数f(x)=ax2+bx+c(a,b,c为实数,a≠0),定义域D:[-1,1](1)当a=1,b=-1时,若函数f(x)在定义域内恒小于零,求c的取值范围;(2)当a=1,常数b<0时,若函数f(x)在定义域内恒不为零,求c的取值范围;(3)当b>2a>0时,在D上是否存在x,使得|f(x)|>b成立?(要求写出推理过程)
展开
1个回答
展开全部
(1)a=1,b=-1y=x2-x+c<0在[-1,1]恒成立
则-c>x2-x在[-1,1]上恒成立
令g(x)=x2-x,x∈[-1,1],则可得g(x)max=2
则-c>2即c<-2
(2)a=1,b<0,f(x)=x2+bx+c≠0在[-1,1]上恒成立?-c≠h(x)=x2+bx在[-1,1]上恒成立,
而函数h(x)=x2+bx的对称轴x=-
>0
(当-
>1b<-2,函数g(x)在[-1,1]单调递减,则可得g(1)≤g(x)≤g(-1),即1+b≤g(x)≤1-b
所以,-c>1-b或-c<1+b 所以c<b-1或c>-1-b
(II)当-
≤1即2≤b<0时,g(-
)≤g(x) ≤g(-1),即-
≤g(x)≤1-b
所以-c>1-b或-c<-
所以,c<b-1或c>
(3)假设在D上存在x,使得|f(x)|>b成立则只要|f(x)|max>b即可
由于b>2a>0,则对称轴x=-
<-1
根据二次函数的性质可得|f(x)|的最大值=max{||f(1)|,|f(-1)|}
|a+b+c|>b或|a-b+c|>b
从而可得,存在实数满足条件
则-c>x2-x在[-1,1]上恒成立
令g(x)=x2-x,x∈[-1,1],则可得g(x)max=2
则-c>2即c<-2
(2)a=1,b<0,f(x)=x2+bx+c≠0在[-1,1]上恒成立?-c≠h(x)=x2+bx在[-1,1]上恒成立,
而函数h(x)=x2+bx的对称轴x=-
b |
2 |
(当-
b |
2 |
所以,-c>1-b或-c<1+b 所以c<b-1或c>-1-b
(II)当-
b |
2 |
b |
2 |
b2 |
4 |
所以-c>1-b或-c<-
b2 |
4 |
所以,c<b-1或c>
b2 |
4 |
(3)假设在D上存在x,使得|f(x)|>b成立则只要|f(x)|max>b即可
由于b>2a>0,则对称轴x=-
b |
2a |
根据二次函数的性质可得|f(x)|的最大值=max{||f(1)|,|f(-1)|}
|a+b+c|>b或|a-b+c|>b
从而可得,存在实数满足条件
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询