如图,AB是⊙O的直径,C是AB延长线上一点,点D在⊙O上,且∠A=30°,∠ABD=2∠BDC . (1)求证:CD是⊙

如图,AB是⊙O的直径,C是AB延长线上一点,点D在⊙O上,且∠A=30°,∠ABD=2∠BDC.(1)求证:CD是⊙O的切线;(2)过点O作OF∥AD,分别交BD、CD... 如图,AB是⊙O的直径,C是AB延长线上一点,点D在⊙O上,且∠A=30°,∠ABD=2∠BDC . (1)求证:CD是⊙O的切线;(2)过点O作OF∥AD,分别交BD、CD于点E、F.若OB =2,求 OE和CF的长. 展开
 我来答
古剑奇谭0147
推荐于2016-12-01 · TA获得超过136个赞
知道答主
回答量:138
采纳率:0%
帮助的人:65.2万
展开全部
(1)连结OD,根据圆周角定理可得∠ADB=90°,即可求得∠ABD=60°,从而可以求得∠BDC= ,即可证得△ODB是等边三角形,则可得∠ODC=90°,问题得证;(2)


试题分析:(1)连结OD,根据圆周角定理可得∠ADB=90°,即可求得∠ABD=60°,从而可以求得∠BDC= ,即可证得△ODB是等边三角形,则可得∠ODC=90°,问题得证;
(2)根据平行线的性质可得∠OED=90°,根据垂径定理可得 ,根据勾股定理可求得OE的长,然后根据∠DOC、∠DOF的正切函数即可求得CD、DF的长,从而可以求得结果.
(1)连结OD

∵AB是⊙O的直径,
∴∠ADB=90°.
∵∠A=30°,
∴∠ABD=60°.
∵∠ABD=2∠BDC,
∴∠BDC=
∵OD=OB,
∴△ODB是等边三角形.
∴∠ODB=60°.
∴∠ODC=∠ODB+∠BDC=90°.
∴CD是⊙O的切线;
(2)∵OF∥AD,∠ADB=90°,
∴∠OED=90°
∵BD=OB=2,


∵OD=OB=2,∠DOC=60°,∠DOF=30°,


点评:此类问题知识点较多,综合性较强,在中考中比较常见,一般难度不大,需熟练掌握.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式