某校从参加高一年级期中考试的学生中随机抽出60名学生,将其数学成绩(均为整数)分成六段[40,50),[50
某校从参加高一年级期中考试的学生中随机抽出60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60)…[90,100]后得到如下部分频率分布直方图.观察图...
某校从参加高一年级期中考试的学生中随机抽出60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60)…[90,100]后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:(Ⅰ)求分数在[70,80)内的频率,并补全这个频率分布直方图;(II)若从60名学生中随机抽取2人,抽到的学生成绩在[40,60)记0分,在[60,80)记1分,在[80,100]记2分,用ξ表示抽取结束后的总记分,求ξ的分布列和数学期望.
展开
1个回答
展开全部
解:(I)设分数在[70,80)内的频率为x,根据频率分布直方图,
有(0.01+0.015×2+0.025+0.005)×10+x=1,
可得x=0.3,所以频率分布直方图如图所示.
(II)学生成绩在[40,60)的有0.25×60=15人,
在[60,80)的有0.45×60=27人,
在[80,100)的有0.3×60=18人,
ξ的可能取值是0,1,2,3,4.
则P(ξ=0)=
=
;P(ξ=1)=
=
; P(ξ=2)=
=
;P(ξ=3)=
=
;P(ξ=4)=
=
.
所以ξ的分布列为:
∴Eξ=0×
+1×
+2×
+3×
+4×
=2.1.
有(0.01+0.015×2+0.025+0.005)×10+x=1,
可得x=0.3,所以频率分布直方图如图所示.
(II)学生成绩在[40,60)的有0.25×60=15人,
在[60,80)的有0.45×60=27人,
在[80,100)的有0.3×60=18人,
ξ的可能取值是0,1,2,3,4.
则P(ξ=0)=
| ||
|
7 |
118 |
| ||||
|
27 |
118 |
| ||||||
|
207 |
590 |
| ||||
|
81 |
295 |
| ||
|
51 |
590 |
所以ξ的分布列为:
∴Eξ=0×
7 |
118 |
27 |
118 |
207 |
590 |
81 |
295 |
51 |
590 |
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询