某次数学竞赛准备了35支铅笔作为奖品发给一、二、三等奖的学生,原计划一等奖每人发给6支,二等奖每人发
某次数学竞赛准备了35支铅笔作为奖品发给一、二、三等奖的学生,原计划一等奖每人发给6支,二等奖每人发给3支,三等奖每人发给2支,后来改为一等将每人发13支,二等奖每人发4...
某次数学竞赛准备了35支铅笔作为奖品发给一、二、三等奖的学生,原计划一等奖每人发给6支,二等奖每人发给3支,三等奖每人发给2支,后来改为一等将每人发13支,二等奖每人发4支,三等奖每人发1支.那么获二等奖的有______人.
展开
展开全部
根据“后来改为一等奖每人发13支”,可以确定获一等奖的人数不大于3.否则仅一等奖就要发不小于39支铅笔,已超过35支,这是不可能的. 当获一等奖有1人时,那么按原计划发二、三等奖的铅笔数应是35-6=29,按改变后发二、三等奖的铅笔数应是35-13=22. 因为29是奇数,可以确定获二等奖的人数必定是奇数.又根据改变后“二等奖每人发4支”,且总数不超过22支,我们能够推知二等奖人数不会超过5,经检验,只有获二等奖是3人才符合题目要求. 故答案为:3. |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询