2个回答
展开全部
因式定理即为余式定理的推论之一:
如果多项式f(a)=0,那么多项式f(x)必定含有因式x-a。
反过来,如果f(x)含有因式x-a,那么,f(a)=0。
将因式定理与待顶系数法配合使用往往可以更简便的进行因式分解。
例题:
因式分解:(x-y)³+(y-z)³+(z-x)³。
这题可以利用立方和公式解答,但较为繁琐。
但仔细观察不难发现,当x=y时,原式的值为0。根据因式定理可知:原式必有因式x-y
同样的,也可以得到原式必有因式y-z和z-x
设(x-y)³+(y-z)³+(z-x)³=k(x-y)(y-z)(z-x)①
任意取x,y,z三值 如x=1 y=2 z=3
代入①得-1-1+8=2k
k=3
所以(x-y)³+(y-z)³+(z-x)³=3(x-y)(y-z)(z-x)
像这样,熟练掌握因式定理后,就可以用观察法找到因式,用待定系数法和恒等变形概念,求出待定系数,就可以较便利的分解因式了。
应用因式定理
对于多项式f(x)=0,如果f(a)=0,那么f(x)必含有因式x-a.
例如:f(x)=x^2+5x+6,f(-2)=0,则可确定x+2是x^2+5x+6的一个因式。(事实上,x^2+5x+6=(x+2)(x+3).)
根法
令多项式f(x)=0,求出其根为x1,x2,x3,……xn,则该多项式可分解为f(x)=(x-x1)(x-x2)(x-x3)……(x-xn) .
例如在分解2x^4+7x^3-2x^2-13x+6时,令2x^4 +7x^3-2x^2-13x+6=0,
则通过综合除法可知,该方程的根为0.5 ,-3,-2,1.
所以2x^4+7x^3-2x^2-13x+6=(2x-1)(x+3)(x+2)(x-1).
如果多项式f(a)=0,那么多项式f(x)必定含有因式x-a。
反过来,如果f(x)含有因式x-a,那么,f(a)=0。
将因式定理与待顶系数法配合使用往往可以更简便的进行因式分解。
例题:
因式分解:(x-y)³+(y-z)³+(z-x)³。
这题可以利用立方和公式解答,但较为繁琐。
但仔细观察不难发现,当x=y时,原式的值为0。根据因式定理可知:原式必有因式x-y
同样的,也可以得到原式必有因式y-z和z-x
设(x-y)³+(y-z)³+(z-x)³=k(x-y)(y-z)(z-x)①
任意取x,y,z三值 如x=1 y=2 z=3
代入①得-1-1+8=2k
k=3
所以(x-y)³+(y-z)³+(z-x)³=3(x-y)(y-z)(z-x)
像这样,熟练掌握因式定理后,就可以用观察法找到因式,用待定系数法和恒等变形概念,求出待定系数,就可以较便利的分解因式了。
应用因式定理
对于多项式f(x)=0,如果f(a)=0,那么f(x)必含有因式x-a.
例如:f(x)=x^2+5x+6,f(-2)=0,则可确定x+2是x^2+5x+6的一个因式。(事实上,x^2+5x+6=(x+2)(x+3).)
根法
令多项式f(x)=0,求出其根为x1,x2,x3,……xn,则该多项式可分解为f(x)=(x-x1)(x-x2)(x-x3)……(x-xn) .
例如在分解2x^4+7x^3-2x^2-13x+6时,令2x^4 +7x^3-2x^2-13x+6=0,
则通过综合除法可知,该方程的根为0.5 ,-3,-2,1.
所以2x^4+7x^3-2x^2-13x+6=(2x-1)(x+3)(x+2)(x-1).
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询