有界函数的具体证明方法??谢谢

 我来答
梦色十年
高粉答主

2019-06-26 · 繁杂信息太多,你要学会辨别
知道大有可为答主
回答量:2967
采纳率:100%
帮助的人:94.7万
展开全部

设函数f(x)的定义域为D,f(x)集合D上有定义。如果存在数K1,使得 f(x)≤K1对任意x∈D都成立,则称函数f(x)在X上有上界。

反之,如果存在数字K2,使得 f(x)≥K2对任意x∈D都成立,则称函数f(x)在D上有下界,而K2称为函数f(x)在D上的一个下界。

如果存在正数M,使得 |f(x)|≤M 对任意x∈D都成立,则称函数在X上有界。如果这样的M不存在,就称函数f(x)在X上无界;等价于,无论对于任何正数M,总存在x1属于X,使得|f(x1)|>M,那么函数f(x)在X上无界。

此外,函数f(x)在X上有界的充分必要条件是它在X上既有上界也有下界。

扩展资料:

函数的有界性与其他函数性质之间的关系。函数的性质:有界性,单调性,周期性,连续性,可积性。

1、单调性

闭区间上的单调函数必有界。其逆命题不成立。

2、连续性

闭区间上的连续函数必有界。其逆命题不成立。

3、可积性

闭区间上的可积函数必有界。其逆命题不成立。

无界函数

类似的我们可以定义无界函数: 设ƒ为定义在D上的函数,若对于任何M(无论M多大),都存在x0∈D,使得|ƒ(x)|≥M。相关详细定义请查看百度百科无界函数

参考资料来源:百度百科-有界函数

相信黎明2012
推荐于2017-09-29
知道答主
回答量:28
采纳率:0%
帮助的人:12万
展开全部
设函数f(x)的定义域为D,f(x)集合D上有定义。

如果存在数K1,使得 f(x)≤K1对任意x∈D都成立,则称函数f(x)在X上有上界。

反之,如果存在数字K2,使得 f(x)≥K2对任意x∈D都成立,则称函数f(x)在D上有下界,而K2称为函数f(x)在D上的一个下界。

如果存在正数M,使得 |f(x)|≤M 对任意x∈D都成立,则称函数在X上有界。如果这样的M不存在,就称函数f(x)在X上无界;等价于,无论对于任何正数M,总存在x1属于X,使得|f(x1)|>M,那么函数f(x)在X上无界。

此外,函数f(x)在X上有界的充分必要条件是它在X上既有上界也有下界。
更多追问追答
追答
1.用定义求。
2.求函数单调性,然后求极值和最值,最后求函数极限,判断函数是否有上下界。
我一直用的是第二个
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式