2个回答
展开全部
由导数的定义
f'(0) = lim(x->0) [f(x) -f(0)] / (x -0) = lim [g(x)/x -a] /x 记为1式
又g'(0) =lim(x->0) g(x) -g(0)/x-0 = lim(x->0) g(x)/x
因此当a = g'(0)时,1式的极限存在
又f'(0)=lim [g(x)/x -a] /x =lim [g(x) - ax]/x^2,运用洛必达法则,
f'(0) = lim [g'(x) - a] /2x (再次洛必达) = lim(x->0) g''(x) /2 = g''(0) /2
另外,若g(x) = e^x -1,满足题目可导条件且g(0) = 0 ,但g'(0) = 1不为0,楼上有问题
f'(0) = lim(x->0) [f(x) -f(0)] / (x -0) = lim [g(x)/x -a] /x 记为1式
又g'(0) =lim(x->0) g(x) -g(0)/x-0 = lim(x->0) g(x)/x
因此当a = g'(0)时,1式的极限存在
又f'(0)=lim [g(x)/x -a] /x =lim [g(x) - ax]/x^2,运用洛必达法则,
f'(0) = lim [g'(x) - a] /2x (再次洛必达) = lim(x->0) g''(x) /2 = g''(0) /2
另外,若g(x) = e^x -1,满足题目可导条件且g(0) = 0 ,但g'(0) = 1不为0,楼上有问题
展开全部
相当于求 x→0 lim g(x)/x
x→0 lim g(x)/x=x→0 lim g'(x)=g'(0)=
g(0)=0 g'(0)=O a=0
f'(x)=(g'(x)*x-g(x))/x^2
f在x=0处的导数= x→0 lim (g'(x)*x-g(x))/x^2
=x→0 lim (g''(x)*x+g'(x)-g''(x))/2x
=x→0 lim (g'''(x)*x+g''(x)+g''(x)-g'''(x))/2
=g''(0)+g''(0)-g'''(0))/2
g(0)=g'(0)=g''(0)=g'''(0)=0
f在x=0处的导数=0
x→0 lim g(x)/x=x→0 lim g'(x)=g'(0)=
g(0)=0 g'(0)=O a=0
f'(x)=(g'(x)*x-g(x))/x^2
f在x=0处的导数= x→0 lim (g'(x)*x-g(x))/x^2
=x→0 lim (g''(x)*x+g'(x)-g''(x))/2x
=x→0 lim (g'''(x)*x+g''(x)+g''(x)-g'''(x))/2
=g''(0)+g''(0)-g'''(0))/2
g(0)=g'(0)=g''(0)=g'''(0)=0
f在x=0处的导数=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询