计算不定积分∫((x^2)*sin2x)dx怎么求??
1个回答
展开全部
∫x²sin(2x)dx
=[∫x²sin(2x)d(2x)]/2
=-[∫x²dcos(2x)]/2
=-x²cos(2x)/2+[∫cos(2x)dx²]/2
=-x²cos(2x)/2+[∫xcos(2x)d(2x)]/2
=-x²cos(2x)/2+[∫xdsin(2x)]/2
=-x²cos(2x)/2+xsin(2x)/2-[∫sin(2x)dx]/2
=-x²cos(2x)/2+xsin(2x)/2-[∫sin(2x)d(2x)]/4
=-x²cos(2x)/2+xsin(2x)/2+cos(2x)/4+C
=[∫x²sin(2x)d(2x)]/2
=-[∫x²dcos(2x)]/2
=-x²cos(2x)/2+[∫cos(2x)dx²]/2
=-x²cos(2x)/2+[∫xcos(2x)d(2x)]/2
=-x²cos(2x)/2+[∫xdsin(2x)]/2
=-x²cos(2x)/2+xsin(2x)/2-[∫sin(2x)dx]/2
=-x²cos(2x)/2+xsin(2x)/2-[∫sin(2x)d(2x)]/4
=-x²cos(2x)/2+xsin(2x)/2+cos(2x)/4+C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询