什么是中心极限定理

 我来答
诚挚还欢喜灬银杏a
高粉答主

推荐于2019-10-20 · 繁杂信息太多,你要学会辨别
知道答主
回答量:10
采纳率:100%
帮助的人:1620
展开全部

中心极限定理,是指概率论中讨论随机变量序列部分和分布渐近于正态分布的一类定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量近似服从正态分布的条件。它是概率论中最重要的一类定理,有广泛的实际应用背景。

在自然界与生产中,一些现象受到许多相互独立的随机因素的影响,如果每个因素所产生的影响都很微小时,总的影响可以看作是服从正态分布的。中心极限定理就是从数学上证明了这一现象。最早的中心极限定理是讨论重点,伯努利试验中,事件A出现的次数渐近于正态分布的问题。

扩展资料:

中心极限定理支撑着和置信区间相关的T检验和假设检验的计算公式和相关理论。如果没有这个定理,之后的推导公式都是不成立的。事实上,以上对于中心极限定理的两种解读,在不同的场景下都可以对A/B测试的指标置信区间判定起到一定作用。

对于属于正态分布的指标数据,我们可以很快捷地对它进行下一步假设检验,并推算出对应的置信区间。而对于那些不属于正态分布的数据,根据中心极限定理,在样本容量很大时,总体参数的抽样分布是趋向于正态分布的,最终都可以依据正态分布的检验公式对它进行下一步分析。

参考资料:百度百科-中心极限定理

匿名用户
推荐于2017-12-15
展开全部
中心极限定理,是概率论中讨论随机变量和的分布以正态分布为极限的一组定理.这组定理是数理统计学和误差分析的理论...林德伯格-列维定理 林德伯格-列维(Lindberg-Levy)定理,即独立同分布随机变量序列的中心极限定理.

中心极限定理(central limit theorem)是概率论中讨论随机变量序列部分和分布渐近于正态分布的一类定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量积累分布函数逐点收敛到正态分布的积累分布函数的条件。
它是概率论中最重要的一类定理,有广泛的实际应用背景。在自然界与生产中,一些现象受到许多相互独立的随机因素的影响,如果每个因素所产生的影响都很微小时,总的影响可以看作是服从正态分布的。中心极限定理就是从数学上证明了这一现象 。最早 的中心极限定理是讨论n重伯努利试验中,事件A出现的次数渐近于正态分布的问题。1716年前后,A.棣莫弗对n重伯努利试验中每次试验事件A出现的概率为1/2的情况进行了讨论,随后,P.-S.拉普拉斯和A.M.李亚普诺夫等进行了推广和改进。自P.莱维在1919~1925年系统地建立了特征函数理论起,中心极限定理的研究得到了很快的发展,先后产生了普遍极限定理和局部极限定理等。极限定理是概率论的重要内容,也是数理统计学的基石之一,其理论成果也比较完美。长期以来,对于极限定理的研究所形成的概率论分析方法,影响着概率论的发展。同时新的极限理论问题也在实际中不断产生。

希望能帮到你,满意望采纳哦。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
090810206
2020-02-23
知道答主
回答量:3
采纳率:0%
帮助的人:2830
展开全部
从总体中抽样,当样本量n足够大时(经验值为n>30),则无论总体服从什么分布,这n个样本的均值都服从正态分布。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式