直线系的性质
几种常见的直线系方程:
(1)过已知点P(x0,y0)的直线系方程:y-y0=k(x-x0)(k为参数)或x=x0(k不存在时)
(2)斜率为k的直线系方程y=kx+b(b是参数)
(3)与已知直线Ax+By+C=0平行的直线系方程Ax+By+λ=0(λ不等于C)
(4)与已知直线Ax+By+C=0垂直的直线系方程Bx-Ay+λ=0(λ为参数)
(5)过直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0的交点的直线系方程:
A1x+B1y+C1+λ(A2x+B2y+C2)=0(λ为参数)不含l2
。
确定平面上一条直线,需要两个独立且相容的几何条件,如果只给定一个条件,直线的位置不能完全确定。另一方面,如果只给定一个几何条件时,二元一次方程的两个独立的系数中,只有一个被确定,那个未被确定的系数是参数。
利用直线系方程求直线,可以简化计算过程,欲求适合某两个几何条件的直线的方程,可先用其中一个条件写出直线系方程,再用另一个条件来确定参数值。
常见的直线系的名称、条件、图形、方程如下表:
常见的直线系方程和它的图形表
用直线系方程求适合某一条件的直线时,应注意不能被该方程表示的直线(例如,过定点(x1,y1)的直线系方程,不能表示直线x-x1=0),若它符合已知条件,应收入。
过两直线交点的直线系方程有两种形式。其中(A1x+B1y+C1)+λ(A2x+B2y+C2)=0 较简单些,但它不能包含直线A2x+B2y+C2=0本身。而方程m(A1x+B1y+C1)+n(A2x+B2y+C2)=0,(m,n不同时为零的实数),可以避免这个缺陷。