
1个回答
展开全部
用拉格朗日乘数法求最大值时的细节.
W=xyz在条件x^2/a^2+y^2/b^2+z^2/c^2=1 的最大值(x>0,y>0,z>0)
令F=xyz+λ(1-x^2/a^2-y^2/b^2-z^2/c^2) 再令F`x=0 F`y=0 F`z=0 F`λ=0
最后得x=a/根号3 y=b/根号3 z=c/根号3 其中解方程时用到了轮换对称性简化方程.
为什么下面这道题不能用对称性呢?
f=x^2+2y^2-(xy)^2再边界x^2+y^2=4 (y>0)上的最大值.
令F=x^2+2y^2-(xy)^2+λ(x^2+y^2-4 )
再令F`x=0 F`y=0 F`λ=0
W=xyz在条件x^2/a^2+y^2/b^2+z^2/c^2=1 的最大值(x>0,y>0,z>0)
令F=xyz+λ(1-x^2/a^2-y^2/b^2-z^2/c^2) 再令F`x=0 F`y=0 F`z=0 F`λ=0
最后得x=a/根号3 y=b/根号3 z=c/根号3 其中解方程时用到了轮换对称性简化方程.
为什么下面这道题不能用对称性呢?
f=x^2+2y^2-(xy)^2再边界x^2+y^2=4 (y>0)上的最大值.
令F=x^2+2y^2-(xy)^2+λ(x^2+y^2-4 )
再令F`x=0 F`y=0 F`λ=0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询