三重积分的计算方法

 我来答
赤衣★飠★
推荐于2017-11-25
知道答主
回答量:75
采纳率:100%
帮助的人:5.7万
展开全部

适用于被积区域Ω不含圆形的区域,且要注意积分表达式的转换和积分上下限的表示方法
⑴先一后二法投影法,先计算竖直方向上的一竖条积分,再计算底面的积分。
①区域条件:对积分区域Ω无限制;
②函数条件:对f(x,y,z)无限制。
⑵先二后一法(截面法):先计算底面积分,再计算竖直方向上的积分。
①区域条件:积分区域Ω为平面或其它曲面(不包括圆柱面、圆锥面、球面)所围成;
②函数条件:f(x,y,)仅为一个变量的函数。 适用被积区域Ω的投影为圆时,依具体函数设定,如设x2+y2=a2,x=asinθ,y=acosθ
①区域条件:积分区域Ω为圆柱形、圆锥形、球形或它们的组合;
②函数条件:f(x,y,z)为含有与x2+y2(或另两种形式)相关的项。 适用于被积区域Ω包含球的一部分。
①区域条件:积分区域为球形或球形的一部分,锥面也可以;
②函数条件:f(x,y,z)含有与x2+y2+z2相关的项。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式