python sklearn中怎样预测给定的新数据
1个回答
展开全部
最近在拿 sklearn 做中文文本分类器,
网上找到的例子都是拿带标签的数据,二八划分后,八成用于训练模型,两成用于测试,
然后分析测试结果看精确度。
现在,我已经使用训练数据做好了模型训练(存在文本分类器的对象了),
拿一段之前数据集里面没有的文本数据,使用训练好的文本分类器做类别预测,
问题是如何拿到预测的类别的名称呢。。。
代码如下:
# cls 是之前已经训练好的文本分类器对象
pred = clf.predict(X_new)
怎样从预测结果 pred ( ndarray )获取到分类的类别名称呢?
我有尝试过如下的方式去获取:
label_list = list()
网上找到的例子都是拿带标签的数据,二八划分后,八成用于训练模型,两成用于测试,
然后分析测试结果看精确度。
现在,我已经使用训练数据做好了模型训练(存在文本分类器的对象了),
拿一段之前数据集里面没有的文本数据,使用训练好的文本分类器做类别预测,
问题是如何拿到预测的类别的名称呢。。。
代码如下:
# cls 是之前已经训练好的文本分类器对象
pred = clf.predict(X_new)
怎样从预测结果 pred ( ndarray )获取到分类的类别名称呢?
我有尝试过如下的方式去获取:
label_list = list()
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询