如何计算一个函数对另一个函数求导

 我来答
休闲娱乐助手之星M
2021-10-19 · TA获得超过53.8万个赞
知道大有可为答主
回答量:2857
采纳率:100%
帮助的人:113万
展开全部

计算一个函数对另一个函数求导具体公式:

y=c(c为常数) y'=0

2.y=x^n y'=nx^(n-1)

3.y=a^x y'=a^xlna

y=e^x y'=e^x

4.y=logax y'=logae/x

y=lnx y'=1/x

5.y=sinx y'=cosx

6.y=cosx y'=-sinx

7.y=tanx y'=1/cos^2x

8.y=cotx y'=-1/sin^2x

9.y=arcsinx y'=1/√1-x^2

10.y=arccosx y'=-1/√1-x^2

11.y=arctanx y'=1/1+x^2

12.y=arccotx y'=-1/1+x^2

导数简介:

导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。

导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。

对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以反过来求原来的函数,即不定积分。

微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。

连鹤Sp
2016-07-22 · TA获得超过774个赞
知道小有建树答主
回答量:858
采纳率:0%
帮助的人:266万
展开全部
首先,导数的产生是从求曲线的切线这一问题而产生的,因此利用导数可以求曲线在任意一点的切线的斜率.其次,利用导数可以解决某些不定式极限(就是指0/0、无穷大/无穷大等等类型的式子),这种方法叫作“洛比达法则”.然后,我们可以利用导数,把一个函数近似的转化成另一个多项式函数,即把函数转化成a0+a1(x-a)+a2(x-a)^2+……+an(x-a)^n,这种多项式叫作“泰勒多项式”,可以用于近似计算、误差估计,也可以用于求函数的极限.另外,利用函数的导数、二阶导数,可以求得函数的形态,例如函数的单调性、凸性、极值、拐点等.最后,利用导数可以解决某些物理问题,例如瞬时速度v(t)就是路程关于时间函数的导数,而加速度又是速度关于时间的导数.而且,在经济学中,导数也有着特殊的意义.
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
committee
2016-08-12 · 知道合伙人交通运输行家
committee
知道合伙人交通运输行家
采纳数:2365 获赞数:19881
毕业于山东理工大学,化学与化工专业,从事焦化工作十年有余,自学工商管理书籍多本,

向TA提问 私信TA
展开全部
计算一个函数对另一个函数求导具体公式:
y=c(c为常数) y'=0
2.y=x^n y'=nx^(n-1)
3.y=a^x y'=a^xlna
y=e^x y'=e^x
4.y=logax y'=logae/x
y=lnx y'=1/x
5.y=sinx y'=cosx
6.y=cosx y'=-sinx
7.y=tanx y'=1/cos^2x
8.y=cotx y'=-1/sin^2x
9.y=arcsinx y'=1/√1-x^2
10.y=arccosx y'=-1/√1-x^2
11.y=arctanx y'=1/1+x^2
12.y=arccotx y'=-1/1+x^2

求导是数学计算中的一个计算方法,导数定义为:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式