多元函数的复合函数二阶偏导公式是什么?为什么书上没有呢?

多元函数的复合函数二阶偏导公式是什么?为什么书上没有呢?这个应该等于多少?... 多元函数的复合函数二阶偏导公式是什么?为什么书上没有呢?
这个应该等于多少?
展开
 我来答
哎哟带你看娱乐
高粉答主

2019-07-17 · 专注于娱乐内容解说介绍,带你了解娱乐圈
哎哟带你看娱乐
采纳数:477 获赞数:276711

向TA提问 私信TA
展开全部

公式为:y'=2x的导数为y''=2。

y=x²的导数为y'=2x,二阶导数即y'=2x的导数为y''=2。

如果一个函数f(x)在某个区间I上有f''(x)(即二阶导数)>0恒成立,那么对于区间I上的任意x,y,总有:f(x)+f(y)≥2f[(x+y)/2],如果总有f''(x)<0成立,那么上式的不等号反向。

扩展资料:

二阶导数的相关规定性质:

1、设f(x)在[a,b]上连续,在(a,b)内具有一阶和二阶导数,那么,若在(a,b)内f''(x)>0,则f(x)在[a,b]上的图形是凹的;若在(a,b)内f''(x)<0,则f(x)在[a,b]上的图形是凸的。

2、结合一阶、二阶导数可以求函数的极值。当一阶导数等于0,而二阶导数大于0时,为极小值点。当一阶导数等于0,而二阶导数小于0时,为极大值点;当一阶导数和二阶导数都等于0时,为驻点

参考资料来源:百度百科-二阶导数

TableDI
2024-07-18 广告
当使用VLOOKUP函数进行匹配时,如果结果返回“#N/A”错误,这通常意味着在查找表中未找到与查找值相匹配的项。可能的原因有:查找值拼写错误、查找表的范围不正确、查找值不在查找列的列、查找表未进行绝对引用导致范围变动等。为了解决这个问题,... 点击进入详情页
本回答由TableDI提供
wanzizALDX
高粉答主

2019-07-17 · 繁杂信息太多,你要学会辨别
知道小有建树答主
回答量:1136
采纳率:100%
帮助的人:27.3万
展开全部

各个分量的偏导数为0,这是一个必要条件。充分条件是这个多元函数的二阶偏导数的行列式为正定或负定的。

如果这个多元函数的二阶偏导数的行列式是半正定的则需要进一步判断三阶行列式。如果这个多元函数的二阶偏导数的行列式是不定的,那么这时不是极值点

以二元函数为例,设函数z=f(x,y)在点(x。,y。)的某邻域内有连续且有一阶及二阶连续偏导数,又f(x)(x。,y。),fy(x。,y。)=0,

令fxx(x。,y。)=a,fxy=(x。,y。)=b,fyy=(x。,y。)=c

则f(x,y)在(x。,y。)处是否取得极值的条件是

(1)ac-b*b>0时有极值

(2)ac-b*b<0时没有极值

(3)ac-b*b=0时可能有极值,也有可能没有极值如果是n元函数需要用行列式表示。

扩展资料:

性质:

(1)如果一个函数f(x)在某个区间I上有f''(x)(即二阶导数)>0恒成立,那么对于区间I上的任意x,y,总有:

f(x)+f(y)≥2f[(x+y)/2],如果总有f''(x)<0成立,那么上式的不等号反向。

几何的直观解释:

如果一个函数f(x)在某个区间I上有f''(x)(即二阶导数)>0恒成立,那么在区间I上f(x)的图象上的任意两点连出的一条线段,这两点之间的函数图象都在该线段的下方,反之在该线段的上方。

(2)判断函数极大值以及极小值。

结合一阶、二阶导数可以求函数的极值。当一阶导数等于0,而二阶导数大于0时,为极小值点。当一阶导数等于0,而二阶导数小于0时,为极大值点;当一阶导数和二阶导数都等于0时,为驻点

(3)函数凹凸性。

设f(x)在[a,b]上连续,在(a,b)内具有一阶和二阶导数,那么,

(1)若在(a,b)内f''(x)>0,则f(x)在[a,b]上的图形是凹的;

(2)若在(a,b)内f’‘(x)<0,则f(x)在[a,b]上的图形是凸的。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
化化墨迹
2016-08-20 · TA获得超过3371个赞
知道小有建树答主
回答量:860
采纳率:73%
帮助的人:393万
展开全部


一般都会用对应法则加下标来写

更多追问追答
追答
f1代表函数对第一变元求偏导,f1仍然是u,v的函数,f11是f1再对第一变元u求偏导
不好意思,图片上写错了
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式