导数中的洛必达定理是什么?
1个回答
2017-01-29 · 知道合伙人教育行家
关注
展开全部
洛必塔法则是解决求解“0/0”型与“∞/∞”型极限的一种有效方法,利用洛必塔法则求极限只要注意以下三点: 1、在每次使用洛必塔法则之前,必须验证是“0/0”型与“∞/∞”型极限。否则会导致错误; 2、洛必塔法则是分子与分母分别求导数,而不是整个分式求导数; 3、使用洛必塔法则求得的结果是实数或∞(不论使用了多少次),则原来极限的结果就是这个实数或∞,求解结束;如果最后得到极限不存在(不是∞的情形),则不能断言原来的极限也不存在,应该考虑用其它的方法求解。洛必达(L 'Hopital)法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法.
洛必达法则
(定理)
设函数f(x)和F(x)满足下列条件:
(1)x→a时,lim f(x)=0,lim F(x)=0;
(2)在点a的某去心邻域内f(x)与F(x)都可导,且F(x)的导数不等于0;
(3)x→a时,lim(f'(x)/F'(x))存在或为无穷大
则 x→a时,lim(f(x)/F(x))=lim(f'(x)/F'(x))
洛必达法则
(定理)
设函数f(x)和F(x)满足下列条件:
(1)x→a时,lim f(x)=0,lim F(x)=0;
(2)在点a的某去心邻域内f(x)与F(x)都可导,且F(x)的导数不等于0;
(3)x→a时,lim(f'(x)/F'(x))存在或为无穷大
则 x→a时,lim(f(x)/F(x))=lim(f'(x)/F'(x))
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询