求f(x)=(x^2-1)^3的单调性和极值

请给出过程,谢谢!... 请给出过程,谢谢! 展开
余音缭绕z4FPl
2009-01-05 · TA获得超过2.7万个赞
知道大有可为答主
回答量:3706
采纳率:85%
帮助的人:1800万
展开全部
解:f(-x)=[(-x)²-1]³=(x²-1)³=f(x),是偶函数。对称轴x=0,即函数关于y轴对称。
取a>b≥1,f(a)-f(b)=(a²-1)³-(b²-1)³=[(a²-1)-(b²-1)][(a²-1)²+(a²-1)(b²-1)+(b²-1)²]=(a²-b²)[(a²)²-2a²+1+a²b²-a²-b²+1+(b²)²-2b²+1];
∵a>b≥1,∴a²-b²=(a+b)(a-b)>0;而a²-1>0,b²-1>0,即:(a²-1)²+(a²-1)(b²-1)+(b²-1)²>0,也就是说在x∈[1,+∞)时,函数单调递增;根据对称性可知,x∈(-∞,-1]时,函数单调递减。

另外,在x∈(0,1)时,取值a>b,同样可算出:f(a)-f(b)=(a²-1)³-(b²-1)³=[(a²-1)-(b²-1)][(a²-1)²+(a²-1)(b²-1)+(b²-1)²]>0,【a²-1<0,b²-1<0,∴(a²-1)(b²-1)>0】,即在区间x∈(0,1)时,函数也是单调递增的,x=1时,函数f(x=1)=(1²-1)³=0,函数在实数轴有意义。

即函数f(x)的图象是一个和y=x²类似的图象,存在极小值f(x=0)=(0²-1)³=-1;
函数在x∈(-∞,0)单调递减,在x∈(0,+∞)单调递增。
苍颜de天天
2009-01-05 · TA获得超过743个赞
知道小有建树答主
回答量:247
采纳率:0%
帮助的人:153万
展开全部
极值正无限和负一。负无限到零上减。零到正无限上增。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式