特征值全为零的矩阵秩一定为0吗
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
这个矩阵按特征值算是四个全为0的特征值
但是秩明显为3
这让我对用非零特征值个数判断矩阵秩的方法产生怀疑了
达人解答下 展开
特征值全为零的矩阵秩不一定为0。
如果矩阵可以对角化,那么非0特征值的个数就等于矩阵的秩;如果矩阵不可以对角化,这个结论就不一定成立了。
若A中至少有一个r阶子式不等于零,且在r<min(m,n)时,A中所有的r+1阶子式全为零,则A的秩为r。
由定义直接可得n阶可逆矩阵的秩为n,通常又将可逆矩阵称为满秩矩阵, det(A)≠0;不满秩矩阵就是奇异矩阵,det(A)=0。
扩展资料:
判断矩阵可对角化的充要条件:
1、矩阵有n个不同的特征向量;
2、特征向量重根的重数等于基础解系的个数。对于第二个充要条件,则需要出现二重以上的重特征值可验证(一重相当于没有重根)。
若矩阵A可对角化,则其对角矩阵Λ的主对角线元素全部为A的特征值,其余元素全部为0。一个矩阵的对角阵不唯一,其特征值可以换序,但都存在由对应特征向量顺序组成的可逆矩阵P。
参考资料来源:
2024-10-13 广告
不是。特征值没有零,矩阵一定满秩。因为矩阵的行列式等于所有特征值的乘积,如果特征值均不为0,则矩阵的行列式不为0,即矩阵满秩。
如将特征值的取值扩展到复数领域,则一个广义特征值有如下形式:Aν=λBν
其中A和B为矩阵。其广义特征值(第二种意义)λ 可以通过求解方程(A-λB)ν=0,得到det(A-λB)=0(其中det即行列式)构成形如A-λB的矩阵的集合。其中特征值中存在的复数项,称为一个“丛(pencil)”。
若B可逆,则原关系式可以写作
也即标准的特征值问题。当B为非可逆矩阵(无法进行逆变换)时,广义特征值问题应该以其原始表述来求解。
如果A和B是实对称矩阵,则特征值为实数。这在上面的第二种等价关系式表述中并不明显,因为
扩展资料
求矩阵的全部特征值和特征向量的方法如下:
第一步:计算的特征多项式;
第二步:求出特征方程的全部根,即为的全部特征值;
第三步:对于的每一个特征值,求出齐次线性方程组:
的一个基础解系,则的属于特征值的全部特征向量是
(其中是不全为零的任意实数).
[注]:若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定.反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值。
由于对称矩阵一定可以对角化,因此对于对称矩阵来说,非零特征值的个数就等于矩阵的秩