一道大一关于求微分方程的通解的证明及求解问题 50
一道大一关于求微分方程的通解的证明及求解问题小学妹实在不会了,请各位学长学姐大神帮忙解答一下吧,蟹蟹啦...
一道大一关于求微分方程的通解的证明及求解问题小学妹实在不会了,请各位学长学姐大神帮忙解答一下吧,蟹蟹啦
展开
1个回答
展开全部
解:
已知△ABC中,AB=AC,BD⊥AC,且BD=1/2AB
求∠BAC的度数
解:作BD⊥AC,交直线AC于点D
(1)当点D在AC上时
∵BD=1/2AB
∴∠BAC=30°
(2)当点D在CA的延长线上时,
∵BD=1/2AB
∴∠BAD=30°
∴∠BAC=150°
f'(x)=2x-m/x,
h'(x)=2x-1,
取f'(x)=0,得m=2x^2;x=√m/2,
取h'(x)=0,得x=1/2,
要满足f(x)和h(x)在公共定义域上具有相同的单调性,两函数极值点必相同,即
√m/2=1/2,所以m=1/2
k(x)=-2lnx+x-a=0,设两零点为x1≥1,x2≤3,a=-2lnx1+x1=-2lnx2+x2;
设g(x1)=-2lnx1+x1,y(x2)=-2lnx2+x2,
g'(x1)=-2/x1+1,(x1≥1),得g(x1)≥g(2)=-2ln2+2;
y'(x2)=-2/x2+1,(x2≤3),得y(x2)≤y(3)=-2ln3+3;
所以有-2ln2+2≤a≤-2ln3+3
已知△ABC中,AB=AC,BD⊥AC,且BD=1/2AB
求∠BAC的度数
解:作BD⊥AC,交直线AC于点D
(1)当点D在AC上时
∵BD=1/2AB
∴∠BAC=30°
(2)当点D在CA的延长线上时,
∵BD=1/2AB
∴∠BAD=30°
∴∠BAC=150°
f'(x)=2x-m/x,
h'(x)=2x-1,
取f'(x)=0,得m=2x^2;x=√m/2,
取h'(x)=0,得x=1/2,
要满足f(x)和h(x)在公共定义域上具有相同的单调性,两函数极值点必相同,即
√m/2=1/2,所以m=1/2
k(x)=-2lnx+x-a=0,设两零点为x1≥1,x2≤3,a=-2lnx1+x1=-2lnx2+x2;
设g(x1)=-2lnx1+x1,y(x2)=-2lnx2+x2,
g'(x1)=-2/x1+1,(x1≥1),得g(x1)≥g(2)=-2ln2+2;
y'(x2)=-2/x2+1,(x2≤3),得y(x2)≤y(3)=-2ln3+3;
所以有-2ln2+2≤a≤-2ln3+3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询