求幂级数∑(∞ ,n=1)x^n/n(n+1)的收敛半径及收敛域及其和函数
1个回答
2017-08-22
展开全部
解:∵ρ=lim(n→∞)丨an+1/an丨=lim(n→∞)n(n+1)/[(n+1)(n+2)]=1,∴收敛半径R=1/ρ=1。
又lim(n→∞)丨Un+1/Un丨=丨x丨/R<1,∴丨x丨<1,即-1<x<1。
而当x=-1时,是交错级数,级数为∑(-1)^n/[n(n+1)]≤∑1/[n(n+1),而后者收敛;当x=1时,收敛。
∴收敛区间为-1≤x≤1,即x∈[-1,1]。
又lim(n→∞)丨Un+1/Un丨=丨x丨/R<1,∴丨x丨<1,即-1<x<1。
而当x=-1时,是交错级数,级数为∑(-1)^n/[n(n+1)]≤∑1/[n(n+1),而后者收敛;当x=1时,收敛。
∴收敛区间为-1≤x≤1,即x∈[-1,1]。
追问
那和函数怎么求啊
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |