求填空题答案 30
展开全部
11. 解:m-2<0,故m<2..........①;m²-7=2,即m²=9,m=±3.........②;①∩②={m∣m=-3}
12. 这个函数的解析式可以是:y=-(x+3)²+2=-(x²+6x+9)+2=-x²-6x-7;
13. 解:将A点坐标代入解析式得:c=3;将B点坐标代入解析式得:-4+2b+3=2b-1=3,故b=2;于是y=-x²+2x+3=-(x²-2x)+3=-[(x-1)²-1]+3=-(x-1)²+4;故顶点坐标为(1,4);
14. 【原题有错:x=-2时,应该y=-13/2;原题y=13/2是错的】
不难求得:y=-(1/2)x²+x-(5/2);故x=3时y=-(9/2)+3-(5/2)=-4
15.解:h=-(5/2)t²+20t+1=-(5/2)(t²-8t)+1=-(5/2)[(t-4)²-16]+1=-(5/2)(t-4)²+41
从点火到引爆需要时间t=4秒。
16.设虚线抛物线的方程为:y=-ax²+c,(a>0)........①,其顶点坐标为(0,c);
由y=2x²+bx+1=2(x²+bx/2)+1=2[(x+b/4)²-b²/16]+1=2(x+b/4)²-(b²/8)+1表示的最上面的那条实线抛物线可知过(0,c),∴c=1;其顶点(-b/4,-b²/8+1)在虚线抛物线线上,因此其顶
点坐标满足方程①,即有:-b²/8+1=-a(b²/16)+1,即有 -b²/8=-ab²/16,故a=2;
于是虚线抛物线的方程为:y=-2x²+1.
12. 这个函数的解析式可以是:y=-(x+3)²+2=-(x²+6x+9)+2=-x²-6x-7;
13. 解:将A点坐标代入解析式得:c=3;将B点坐标代入解析式得:-4+2b+3=2b-1=3,故b=2;于是y=-x²+2x+3=-(x²-2x)+3=-[(x-1)²-1]+3=-(x-1)²+4;故顶点坐标为(1,4);
14. 【原题有错:x=-2时,应该y=-13/2;原题y=13/2是错的】
不难求得:y=-(1/2)x²+x-(5/2);故x=3时y=-(9/2)+3-(5/2)=-4
15.解:h=-(5/2)t²+20t+1=-(5/2)(t²-8t)+1=-(5/2)[(t-4)²-16]+1=-(5/2)(t-4)²+41
从点火到引爆需要时间t=4秒。
16.设虚线抛物线的方程为:y=-ax²+c,(a>0)........①,其顶点坐标为(0,c);
由y=2x²+bx+1=2(x²+bx/2)+1=2[(x+b/4)²-b²/16]+1=2(x+b/4)²-(b²/8)+1表示的最上面的那条实线抛物线可知过(0,c),∴c=1;其顶点(-b/4,-b²/8+1)在虚线抛物线线上,因此其顶
点坐标满足方程①,即有:-b²/8+1=-a(b²/16)+1,即有 -b²/8=-ab²/16,故a=2;
于是虚线抛物线的方程为:y=-2x²+1.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |