向量微分算子▽的物理意义是什么,梯度o

 我来答
EdisonJay
2017-04-14 · TA获得超过419个赞
知道小有建树答主
回答量:188
采纳率:80%
帮助的人:58万
展开全部
向量微分算子▽的物理意义
哈密顿算子, 数学符号为▽,读作 Hamiltonian.“▽”具有“双重性格”,它既是一个矢量,又是一个微分算子(求导运算),所以哈密顿算符兼具矢量和微分的性质。
梯度记做GRAD,就是沿着某方向的变化率,算子▽直接作用在函数上。
旋度记做ROT,是算子▽叉乘向量函数。意义是向量场沿法向量的平均旋转强度,向量场在曲面上旋量的总和等于该向量场沿该曲面边界曲线的正向的环量,也就是封闭曲线的线积分。旋量为0的向量场叫做无旋场,只有这种场才有势函数,也就是保守场。
富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式