∫arctanx/(1+x²)dx 怎么解

 我来答
帐号已注销
2019-04-05 · TA获得超过82.9万个赞
知道大有可为答主
回答量:2602
采纳率:100%
帮助的人:171万
展开全部

∫arctanx/(1+x²)dx=1/2(atctanx)^2+C。C为常数。

分析过程如下:

∫((arctanx)/(1+x²))dx

=∫((arctanx)darctanx(u=arctanx,∫((arctanx)darctanx=∫兆瞎udu)

=1/2(atctanx)^2+C

扩展资料:

分部积分:

(uv)'=u'v+uv'

得:u'v=(uv)'-uv'

两边积分得:∫ u'v dx=∫ (uv)'族衫空 dx - ∫ uv' dx

即:∫ u'v dx = uv - ∫ uv' d,这就是分部积分公式

也可简写为:∫ v du = uv - ∫ u dv

不定积分的公式

1、∫ a dx = ax + C,a和C都是常数

2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1

3、∫ 1/x dx = ln|x| + C

4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1

5、∫ e^x dx = e^x + C

6、塌孙∫ cosx dx = sinx + C

7、∫ sinx dx = - cosx + C

8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C

丹丹丹fan
2018-06-14 · 超过21用户采纳过TA的回答
知道答主
回答量:38
采纳率:71%
帮助的人:20.8万
展开全部


如图,滚册不懂睁悉可以追问悉备乎

更多追问追答
追问
不懂
哪步都不懂
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式