1个回答
展开全部
由y-xe^(y-1)=1得,y(0)=1
y'-e^(y-1)-xe^(y-1) *y'=0,所以,y'(0)=1
y"-e^(y-1) *y' -e^(y-1) *y' -xe^(y-1) *(y')^2 -xe^(y-1) *y''=0,所以,y"(0)=2
dz/dx = f'(lny-sinx) * ((1/y)*y' -cosx)
dz/dx |(x=0) = f'(lny-sinx) * ((1/y)*y' -cosx) |(x=0) = 1*0 =0
d^2z/dx^2 |(x=0) = f"(lny-sinx) *((1/y)*y' -cosx)^2 +f'(lny-sinx) *(-(1/y^2)*y' +(1/y)*y" +sinx) |(x=0)
=0 +1
=1
y'-e^(y-1)-xe^(y-1) *y'=0,所以,y'(0)=1
y"-e^(y-1) *y' -e^(y-1) *y' -xe^(y-1) *(y')^2 -xe^(y-1) *y''=0,所以,y"(0)=2
dz/dx = f'(lny-sinx) * ((1/y)*y' -cosx)
dz/dx |(x=0) = f'(lny-sinx) * ((1/y)*y' -cosx) |(x=0) = 1*0 =0
d^2z/dx^2 |(x=0) = f"(lny-sinx) *((1/y)*y' -cosx)^2 +f'(lny-sinx) *(-(1/y^2)*y' +(1/y)*y" +sinx) |(x=0)
=0 +1
=1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询