由两点怎么求直线方程

 我来答
鲨鱼星小游戏
高粉答主

2021-06-09 · 最爱分享有趣的游戏日常!
鲨鱼星小游戏
采纳数:2712 获赞数:238288

向TA提问 私信TA
展开全部

直线方程的公式有以下几种:

斜截式:y=kx+b

截距式:x/a+y/b=1

两点式:(x-x1)/(x2-x1)=(y-y1)/(y2-y1)

一般式:ax+by+c=0

只要知道两点坐标,代入任何一种公式,都可以求出直线的方程。

由两点这样求直线方程

两个点坐标是:(x1,y1)(x2,y2)

直线方程是(x-x1)/(x2-x1)=(y-y1)/(y2-y1)

空间方向

空间直线的方向用一个与该直线平行的非零向量来表示,该向量称为这条直线的一个方向向量。直线在空间中的位置, 由它经过的空间一点及它的一个方向向量完全确定。

欧几里得几何学中,直线只是一个直观的几何对象。在建立欧几里得几何学的公理体系时,直线与点、平面等都是不加定义的,它们之间的关系则由所给公理刻画。

帐号已注销
2021-05-24 · TA获得超过77万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:159万
展开全部

直线方程的公式有以下几种:

斜截式:y=kx+b

截距式:x/a+y/b=1

两点式:(x-x1)/(x2-x1)=(y-y1)/(y2-y1)

一般式:ax+by+c=0

只要知道两点坐标,代入任何一种公式,都可以求出直线的方程。

由两点这样求直线方程

两个点坐标是:(x1,y1)(x2,y2)

直线方程是(x-x1)/(x2-x1)=(y-y1)/(y2-y1)

空间方向

空间直线的方向用一个与该直线平行的非零向量来表示,该向量称为这条直线的一个方向向量。直线在空间中的位置, 由它经过的空间一点及它的一个方向向量完全确定。在欧几里得几何学中,直线只是一个直观的几何对象。在建立欧几里得几何学的公理体系时,直线与点、平面等都是不加定义的,它们之间的关系则由所给公理刻画。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
博阅AI自媒体创作者
2023-07-16 · 资深写作者,愿意给你推荐最优质的文章。
博阅AI自媒体创作者
采纳数:428 获赞数:106

向TA提问 私信TA
展开全部

有以下两种方法可以求由两点确定的直线的方程:

方法一:

  • 已知两个点的坐标,可以设出直线的方程。

  • 根据直线方程的斜截式,可以写出直线方程的一般形式。

  • 根据直线方程的一般形式,可以求出直线方程的斜率。

  • 根据直线方程的斜率和过点坐标,可以求出直线方程的截距。

  • 根据直线方程的一般形式,可以写出直线方程的截距式。

  • 根据直线方程的截距式,可以写出直线方程的点斜式。

  • 根据直线方程的点斜式,可以求出直线方程。

  • 方法二:

  • 已知两个点的坐标,可以先写出两点间的距离公式。

  • 根据两点间的距离公式,可以求出直线方程的斜率。

  • 根据直线方程的斜率和过点坐标,可以求出直线方程的截距。

  • 根据直线方程的截距和斜率,可以写出直线方程的截距式。

  • 根据直线方程的截距式,可以写出直线方程的一般形式。

  • 根据直线方程的一般形式,可以求出直线方程。

  • 无论哪种方法,最终都可以得到由两点确定的直线的方程。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
茹翊神谕者

2022-06-26 · 奇文共欣赏,疑义相与析。
茹翊神谕者
采纳数:3365 获赞数:25132

向TA提问 私信TA
展开全部

简单计算一下,答案如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
数码达人小沫
2023-07-14 · 超过260用户采纳过TA的回答
知道小有建树答主
回答量:2771
采纳率:0%
帮助的人:35万
展开全部
由两点求直线方程的一般步骤如下:
1. 确定两点的坐标,假设为点A(x₁, y₁)和点B(x₂, y₂)。
2. 计算斜率m,斜率可以通过公式m = (y₂ - y₁) / (x₂ - x₁)来计算。
3. 使用点斜式或者一般式来表示直线方程。
- 点斜式:使用已知的一点和斜率,可表示为y - y₁ = m(x - x₁)。
- 一般式:表示为Ax + By + C = 0,其中A、B、C的值可以通过将点A或点B的坐标代入方程中求解。
需要注意的是,在计算斜率时需要注意两点的横坐标不相等,避免分母为零的情况。此外,如果两点的纵坐标相等,说明两点在同一条水平线上,直线方程为y = 常数。如果两点的横坐标相等,说明两点在同一条竖直线上,直线方程为x = 常数。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式