展开全部
(1)a(n+1)^2-an^2=S(n+1)+Sn-Sn-S(n-1)=a(n+1)-an
[a(n+1)+an][a(n+1)-an]=a(n+1)-an
a(n+1)=an或a(n+1)=-an+1(因为an恒>0,故舍去)
所以an=a2
又因为a2^2=S2+S1=a2+2a1=a2+2
(a2-2)(a2+1)=0
a2=2或-1(舍去)
所以{an}的通项公式为:当n=1时,an=1;当n>=2时,an=2
log(2,b1*b2*...*bn)=log{2,2^[n(n+1)/2]}=n(n+1)/2
log(2,b1)+log(2,b2)+...+log(2,bn)=n(n+1)/2
log(2,bn)=n(n+1)/2-(n-1)n/2=n
bn=2^n
(2)当n=1时,an*bn=2;当n>=2时,an*bn=2^(n+1)
所以当n=1时,Tn=a1*b1=2
当n>=2时,Tn=a1*b1+a2*b2+...+an*bn
=2+2^3+2^4+...+2^(n+1)
=2[1-2^(n+1)]/(1-2)-4
=2^(n+2)-6
[a(n+1)+an][a(n+1)-an]=a(n+1)-an
a(n+1)=an或a(n+1)=-an+1(因为an恒>0,故舍去)
所以an=a2
又因为a2^2=S2+S1=a2+2a1=a2+2
(a2-2)(a2+1)=0
a2=2或-1(舍去)
所以{an}的通项公式为:当n=1时,an=1;当n>=2时,an=2
log(2,b1*b2*...*bn)=log{2,2^[n(n+1)/2]}=n(n+1)/2
log(2,b1)+log(2,b2)+...+log(2,bn)=n(n+1)/2
log(2,bn)=n(n+1)/2-(n-1)n/2=n
bn=2^n
(2)当n=1时,an*bn=2;当n>=2时,an*bn=2^(n+1)
所以当n=1时,Tn=a1*b1=2
当n>=2时,Tn=a1*b1+a2*b2+...+an*bn
=2+2^3+2^4+...+2^(n+1)
=2[1-2^(n+1)]/(1-2)-4
=2^(n+2)-6
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询