“mathematica”计算方程组是什么?

 我来答
ggggwhw
推荐于2019-11-01 · TA获得超过6692个赞
知道大有可为答主
回答量:2438
采纳率:0%
帮助的人:988万
展开全部
用t表示θ,
方程为Solve[{a2 Cos[t1 + t2] + a1 Cos[t1] == x0, a2 Sin[t1 + t2] + a1 Sin[t1] == y0}, {t1, t2}]
解得:
{{t2 -> -ArcCos[(-a1^2 - a2^2 + x0^2 + y0^2)/(2 a1 a2)],
t1 -> -ArcCos[(a1^3 x0 - a1 a2^2 x0 + a1 x0^3 +
a1 x0 y0^2 - \[Sqrt](-a1^6 y0^2 + 2 a1^4 a2^2 y0^2 -
a1^2 a2^4 y0^2 + 2 a1^4 x0^2 y0^2 + 2 a1^2 a2^2 x0^2 y0^2 -
a1^2 x0^4 y0^2 + 2 a1^4 y0^4 + 2 a1^2 a2^2 y0^4 -
2 a1^2 x0^2 y0^4 - a1^2 y0^6))/(2 (a1^2 x0^2 +
a1^2 y0^2))]}, {t2 -> -ArcCos[(-a1^2 - a2^2 + x0^2 + y0^2)/(
2 a1 a2)],
t1 -> ArcCos[(a1^3 x0 - a1 a2^2 x0 + a1 x0^3 +
a1 x0 y0^2 - \[Sqrt](-a1^6 y0^2 + 2 a1^4 a2^2 y0^2 -
a1^2 a2^4 y0^2 + 2 a1^4 x0^2 y0^2 + 2 a1^2 a2^2 x0^2 y0^2 -
a1^2 x0^4 y0^2 + 2 a1^4 y0^4 + 2 a1^2 a2^2 y0^4 -
2 a1^2 x0^2 y0^4 - a1^2 y0^6))/(2 (a1^2 x0^2 +
a1^2 y0^2))]}, {t2 -> -ArcCos[(-a1^2 - a2^2 + x0^2 + y0^2)/(
2 a1 a2)],
t1 -> -ArcCos[(a1^3 x0 - a1 a2^2 x0 + a1 x0^3 +
a1 x0 y0^2 + \[Sqrt](-a1^6 y0^2 + 2 a1^4 a2^2 y0^2 -
a1^2 a2^4 y0^2 + 2 a1^4 x0^2 y0^2 + 2 a1^2 a2^2 x0^2 y0^2 -
a1^2 x0^4 y0^2 + 2 a1^4 y0^4 + 2 a1^2 a2^2 y0^4 -
2 a1^2 x0^2 y0^4 - a1^2 y0^6))/(2 (a1^2 x0^2 +
a1^2 y0^2))]}, {t2 -> -ArcCos[(-a1^2 - a2^2 + x0^2 + y0^2)/(
2 a1 a2)],
t1 -> ArcCos[(a1^3 x0 - a1 a2^2 x0 + a1 x0^3 +
a1 x0 y0^2 + \[Sqrt](-a1^6 y0^2 + 2 a1^4 a2^2 y0^2 -
a1^2 a2^4 y0^2 + 2 a1^4 x0^2 y0^2 + 2 a1^2 a2^2 x0^2 y0^2 -
a1^2 x0^4 y0^2 + 2 a1^4 y0^4 + 2 a1^2 a2^2 y0^4 -
2 a1^2 x0^2 y0^4 - a1^2 y0^6))/(2 (a1^2 x0^2 +
a1^2 y0^2))]}, {t2 ->
ArcCos[(-a1^2 - a2^2 + x0^2 + y0^2)/(2 a1 a2)],
t1 -> -ArcCos[(a1^3 x0 - a1 a2^2 x0 + a1 x0^3 +
a1 x0 y0^2 - \[Sqrt](-a1^6 y0^2 + 2 a1^4 a2^2 y0^2 -
a1^2 a2^4 y0^2 + 2 a1^4 x0^2 y0^2 + 2 a1^2 a2^2 x0^2 y0^2 -
a1^2 x0^4 y0^2 + 2 a1^4 y0^4 + 2 a1^2 a2^2 y0^4 -
2 a1^2 x0^2 y0^4 - a1^2 y0^6))/(2 (a1^2 x0^2 +
a1^2 y0^2))]}, {t2 ->
ArcCos[(-a1^2 - a2^2 + x0^2 + y0^2)/(2 a1 a2)],
t1 -> ArcCos[(a1^3 x0 - a1 a2^2 x0 + a1 x0^3 +
a1 x0 y0^2 - \[Sqrt](-a1^6 y0^2 + 2 a1^4 a2^2 y0^2 -
a1^2 a2^4 y0^2 + 2 a1^4 x0^2 y0^2 + 2 a1^2 a2^2 x0^2 y0^2 -
a1^2 x0^4 y0^2 + 2 a1^4 y0^4 + 2 a1^2 a2^2 y0^4 -
2 a1^2 x0^2 y0^4 - a1^2 y0^6))/(2 (a1^2 x0^2 +
a1^2 y0^2))]}, {t2 ->
ArcCos[(-a1^2 - a2^2 + x0^2 + y0^2)/(2 a1 a2)],
t1 -> -ArcCos[(a1^3 x0 - a1 a2^2 x0 + a1 x0^3 +
a1 x0 y0^2 + \[Sqrt](-a1^6 y0^2 + 2 a1^4 a2^2 y0^2 -
a1^2 a2^4 y0^2 + 2 a1^4 x0^2 y0^2 + 2 a1^2 a2^2 x0^2 y0^2 -
a1^2 x0^4 y0^2 + 2 a1^4 y0^4 + 2 a1^2 a2^2 y0^4 -
2 a1^2 x0^2 y0^4 - a1^2 y0^6))/(2 (a1^2 x0^2 +
a1^2 y0^2))]}, {t2 ->
ArcCos[(-a1^2 - a2^2 + x0^2 + y0^2)/(2 a1 a2)],
t1 -> ArcCos[(a1^3 x0 - a1 a2^2 x0 + a1 x0^3 +
a1 x0 y0^2 + \[Sqrt](-a1^6 y0^2 + 2 a1^4 a2^2 y0^2 -
a1^2 a2^4 y0^2 + 2 a1^4 x0^2 y0^2 + 2 a1^2 a2^2 x0^2 y0^2 -
a1^2 x0^4 y0^2 + 2 a1^4 y0^4 + 2 a1^2 a2^2 y0^4 -
2 a1^2 x0^2 y0^4 - a1^2 y0^6))/(2 (a1^2 x0^2 +
a1^2 y0^2))]}}
上海华然企业咨询
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步... 点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式