3个回答
展开全部
(2)
(x-2)/(x+2) = 1 - 4/(x+2)
let
1/y = 4/(x+2)
lim(x->∞) [(x-2)/(x+2)]^(2x)
=lim(x->∞) [1- 4/(x+2)]^(2x)
=lim(y->∞) (1- 1/y)^[2(4y-2)]
=lim(y->∞) (1- 1/y)^(8y)
=e^(-8)
(4)
lim(x->∞) ( 1- 1/x)^(√x)
=lim(x->∞) e^[ ln( 1- 1/x)/ (1/√x) ] (0/0分子分母分别求导)
=lim(x->∞) e^{ [1/(x-1) - 1/x] / [-(1/2)(1/x^(3/2)] }
=lim(x->∞) e^{ -2x^(3/2)/[x(x-1)] }
=e^0
=1
(6)
x->0
cosx ~ 1- (1/2)x^2
lim(x->0) (cosx)^[1/(1-cosx) ]
=lim(x->0) (1- (1/2)x^2)^{ 1/[(1/2)x^2] }
= e^(-1)
(x-2)/(x+2) = 1 - 4/(x+2)
let
1/y = 4/(x+2)
lim(x->∞) [(x-2)/(x+2)]^(2x)
=lim(x->∞) [1- 4/(x+2)]^(2x)
=lim(y->∞) (1- 1/y)^[2(4y-2)]
=lim(y->∞) (1- 1/y)^(8y)
=e^(-8)
(4)
lim(x->∞) ( 1- 1/x)^(√x)
=lim(x->∞) e^[ ln( 1- 1/x)/ (1/√x) ] (0/0分子分母分别求导)
=lim(x->∞) e^{ [1/(x-1) - 1/x] / [-(1/2)(1/x^(3/2)] }
=lim(x->∞) e^{ -2x^(3/2)/[x(x-1)] }
=e^0
=1
(6)
x->0
cosx ~ 1- (1/2)x^2
lim(x->0) (cosx)^[1/(1-cosx) ]
=lim(x->0) (1- (1/2)x^2)^{ 1/[(1/2)x^2] }
= e^(-1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
侠骨柔肠改编自原著《侠女》篇。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询