求微分方程通解,求详细过程

 我来答
匿名用户
2019-06-08
展开全部
首先,把原式化简一下,等式两边先同时除以dx,再同时除以x,就可以得到:
y/x+(1+y/x)(dy/dx)=0的等式 (0),
设u=y/x(1),推出dy/dx=(xdu/dx)+u (2),
将(1)(2)同时带入(0)式:u+(1+u)(xdu/dx+u)=0
化简以后可以得到:x(1+u)du/dx =-u^2-2u
继续化简就是:
-(1+u)/u(u+2)du=dx /x
两边同时积分.
右边积分是ln x,
左边的-(1+u)/u(u+2)=-1/2*[(1/u)+1/(u+2)]
-1/2*[(1/u)+1/(u+2)]du=-1/2*[du/u+du/(u+2)]
左边积分后就是:-1/2*[ln u +ln(u+2)]
通解还要再加上一个常数C,
所以就是:-1/2*[ln u +ln(u+2)]=ln x+C
将u=y/x带入得到-1/2*[ln(y/x)+ln(y/x+2)]=lnx+c
杨建朝老师玩数学
高粉答主

2019-06-08 · 中小学教师,杨建朝,蒲城县教研室蒲城县教育学会、教育领域创作...
个人认证用户
杨建朝老师玩数学
采纳数:16639 获赞数:37818

向TA提问 私信TA
展开全部


求微分方程通解,
求详细过程
具体解答如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2019-06-08
展开全部


微分方程求通解,其详细过程,见图。
此题可以化为关于x的一阶线性微分方程,可以直接代通解高数,得到微分方程的通解。
求微分方程通解,详细过程见上图。

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
holdmyhand77
2019-06-08 · TA获得超过4714个赞
知道小有建树答主
回答量:1704
采纳率:39%
帮助的人:490万
展开全部
要用格林公式
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式