(高等数学)这题怎么做呢
1个回答
展开全部
a1^n+a2^n+……+ak^n
因为一共只有k个(即有限个)数,故在这k个数中,必有一个最大值amax
又有ai≥0
因此,可以得到不等式:
amax^n≤a1^n+a2^n+……+ak^n≤k*amax^n
同时开n次方,不等号不改变:
(amax^n)^(1/n)≤(a1^n+a2^n+……+ak^n)^(1/n)≤(k*amax^n)^(1/n)
即有:amax≤(a1^n+a2^n+……+ak^n)^(1/n)≤k^(1/n)*amax
因为,lim amax
=amaxlim k^(1/n)*amax
=amax*lim k^(1/n)
=amax*1
=amax故,根据迫敛性,
lim (a1^n+a2^n+……+ak^n)^(1/n)=amax
其中amax=max{a1,a2,……,ak}
因为一共只有k个(即有限个)数,故在这k个数中,必有一个最大值amax
又有ai≥0
因此,可以得到不等式:
amax^n≤a1^n+a2^n+……+ak^n≤k*amax^n
同时开n次方,不等号不改变:
(amax^n)^(1/n)≤(a1^n+a2^n+……+ak^n)^(1/n)≤(k*amax^n)^(1/n)
即有:amax≤(a1^n+a2^n+……+ak^n)^(1/n)≤k^(1/n)*amax
因为,lim amax
=amaxlim k^(1/n)*amax
=amax*lim k^(1/n)
=amax*1
=amax故,根据迫敛性,
lim (a1^n+a2^n+……+ak^n)^(1/n)=amax
其中amax=max{a1,a2,……,ak}
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询