求两个定积分,谢谢
2个回答
展开全部
5、令√x=t,则x=t²,dx=2tdt
原式=∫[0,1]2tdt/(1+t)
=2∫[0,1][1-1/(1+t)]dt
=2[t-ln(1+t)]|[0,1]
=2(1-ln2)
7、原式=∫[0,1]√[1-(x-1)²]dx
令x-1=sint,dx=costdt
x=0时,t=-π/2;x=1时,t=0.
故原式=∫[-π/2,0]cos²tdt
=½∫[-π/2,0](1+cos2t)dt
=½ (t+½sin2t)|[-π/2,0]
=½(0+0+π/2-0)
=π/4
原式=∫[0,1]2tdt/(1+t)
=2∫[0,1][1-1/(1+t)]dt
=2[t-ln(1+t)]|[0,1]
=2(1-ln2)
7、原式=∫[0,1]√[1-(x-1)²]dx
令x-1=sint,dx=costdt
x=0时,t=-π/2;x=1时,t=0.
故原式=∫[-π/2,0]cos²tdt
=½∫[-π/2,0](1+cos2t)dt
=½ (t+½sin2t)|[-π/2,0]
=½(0+0+π/2-0)
=π/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询