1个回答
展开全部
最简单最快速的方法是利用欧氏空间的一个定理:如果空间的维数为n,则空间内任意n个线性无关的向量可以做该空间的基底。矩阵的行秩等于列秩。来看这道题:首先初等行变换矩阵变为阶梯型,发现该矩阵的秩为3。那么,这个矩阵中任意三个线性无关的行向量就是该矩阵行空间的基底,这个矩阵只有3个行向量,那这三个行向量就是基底。然后看列空间,第一列与第四列明显线性无关。记这两条列向量为a1,a4,为了验证a2,a3中哪条向量与这两条线性无关,做出假设,a2与a1,a4线性相关,则存在数x,y,使得xa2+ya3=a2。得到x+y=3,2x+2y=1,3x+6y=4,光看前两个式子就知道这样的x,y不存在。所以a1,a2,a4线性无关,所以a1,a2,a4就是列空间的基底。这个方法是极为快速简洁的方法,总比换底公式快的多的多。零空间的基实际上笨法子就是最好的办法:初等行变换得如下矩阵 1 3 -2 1 0 -5 7 0 0 0 16 4 令x4=1,解得x3=-1/4,x2=-7/20,x1=-9/20 (-9/20 -7/20 -1/4 1)就是零空间的基底。实际上求零解空间的基底就是求Ax=0的基础解系。
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询