
2个回答
展开全部
反复用降幂公式 : 2(cosu)^2 = 1+cos2u
I = 2∫<0, π/2>4(cosx)^4dx = 2∫<0, π/2>[2(cosx)^2]^2dx
= 2∫<0, π/2>(1+cos2x)^2dx = 2∫<0, π/2>[1+2cos2x+(cos2x)^2]dx
= 2∫<0, π/2>[1+2cos2x+1/2+(1/2)cos4x]dx
= 2∫<0, π/2>[3/2+2cos2x+(1/2)cos4x]dx
I = 2∫<0, π/2>4(cosx)^4dx = 2∫<0, π/2>[2(cosx)^2]^2dx
= 2∫<0, π/2>(1+cos2x)^2dx = 2∫<0, π/2>[1+2cos2x+(cos2x)^2]dx
= 2∫<0, π/2>[1+2cos2x+1/2+(1/2)cos4x]dx
= 2∫<0, π/2>[3/2+2cos2x+(1/2)cos4x]dx
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询