运用方法如下:
1、使用P规则,把R当作一般前提(就像S一样)来使用;但应加以说明:附加前提。
2、当推导出C之后,可直接写出最后的结论:R→C;这一步的说明是:CP规则。
离散数学研究离散量的结构及其相互关系的数学学科,现代数学的一个重要分支。离散的含义是指不同的连接在一起的元素,主要是研究基于离散量的结构和相互间的关系,其对象一般是有限个或可数个元素。
扩展资料:
主题内容:
1、集论部分:集及其运算、二元关系与函数、自然数与自然数集、集的基数性。
2、图论部分:图的基本概念、欧拉图与哈密顿图、树、图的矩阵表示、图、图着色、优势集、覆盖集、独立集与匹配、加权图及其应用。
3、代数结构:代数系统的基本概念,半群和奇异点,群,环和域,格和布尔代数。
4、组合数学:组合存在定理,基本计数公式,组合计数方法,组合计数定理。
5、数学逻辑:命题逻辑、一阶谓词演算、解算原理。
2024-04-02 广告
前提是H1,H2,...,Hn,欲证结论R→P(结论是条件式),则将条件式作为附加前提证得P即可,这就是CP规则。
设H=H1∧H2∧...∧Hn,由前提H证明R→P,即证明H→(R→P)永真,而H→(R→P)等价于H∧R→P,因此证明H∧R→P永真即可。
扩展资料
随着信息时代的到来,工业革命时代以微积分为代表的连续数学占主流的地位已经发生了变化,离散数学的重要性逐渐被人们认识。
离散数学课程所传授的思想和方法,广泛地体现在计算机科学技术及相关专业的诸领域,从科学计算到信息处理,从理论计算机科学到计算机应用技术,从计算机软件到计算机硬件,从人工智能到认知系统,无不与离散数学密切相关。
由于数字电子计算机是一个离散结构,它只能处理离散的或离散化了的数量关系, 因此,无论计算机科学本身,还是与计算机科学及其应用密切相关的现代科学研究领域;
都面临着如何对离散结构建立相应的数学模型;又如何将已用连续数量关系建立起来的数学模型离散化,从而可由计算机加以处理。
离散数学是传统的逻辑学,集合论(包括函数),数论基础,算法设计,组合分析,离散概率,关系理论,图论与树,抽象代数(包括代数系统,群、环、域等),布尔代数,计算模型(语言与自动机)等汇集起来的一门综合学科。离散数学的应用遍及现代科学技术的诸多领域。
离散数学也可以说是计算机科学的基础核心学科,在离散数学中的有一个著名的典型例子-四色定理又称四色猜想,这是世界近代三大数学难题之一;
它是在1852年,由英国的一名绘图员弗南西斯·格思里提出的,他在进行地图着色时,发现了一个现象,“每幅地图都可以仅用四种颜色着色,并且共同边界的国家都可以被着上不同的颜色”。
那么这能否从数学上进行证明呢?100多年后的1976年,肯尼斯·阿佩尔(Kenneth Appel)和沃尔夫冈·哈肯(Wolfgang Haken)使用计算机辅助计算,用了1200个小时和100亿次的判断,终于证明了四色定理,轰动世界,这就是离散数学与计算机科学相互协作的结果。
离散数学可以看成是构筑在数学和计算机科学之间的桥梁,因为离散数学既离不开集合论、图论等数学知识,又和计算机科学中的数据库理论、数据结构等相关,它可以引导人们进入计算机科学的思维领域,促进了计算机科学的发展。
参考资料:离散数学.百度百科
前提是H1,H2,...,Hn,欲证结论R→P(结论是条件式),则将条件式作为附加前提证得P即可,这就是CP规则.
设H=H1∧H2∧...∧Hn,由前提H证明R→P,即证明H→(R→P)永真,而H→(R→P)等价于H∧R→P,因此证明H∧R→P永真即可.
扩展资料:
什么是离散数学
离散数学是研究离散量的结构及其相互关系的数学学科,离散数学是数学几个分支的总称,研究基于离散空间而不是连续的数学结构。更一般地,离散数学被视为处理可数集合(与整数子集基数相同的集合,包括有理数集但不包括整数集)的数学分支。与光滑变化的实数不同,离散数学的研究对象———例如整数、图和数学逻辑中的命题———不是光滑变化的,而是拥有不等、分立的值。离散数学中的对象集合可以是有限或者是无限的。特别是,有限数学一词通常指代离散数学处理有限集合的那些部分,特别是在与商业相关的领域。包括基本的概率论、线性规划、矩阵和行列式的理论。
参考资料:百度百科-离散数学
设H=H1∧H2∧...∧Hn,由前提H证明R→P,即证明H→(R→P)永真,而H→(R→P)等价于H∧R→P,因此证明H∧R→P永真即可.