高等数学函数的连续性问题 30
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
证明:对于任一点x0∈[a, b] 因为f(x)连续,所以lim(x->x0-) f(x)=lim(x->x0+) f(x)=f(x0) 因为cosx是连续的。所以lim(x->x0-) cosx=lim(x->x0+) cosx=cosx0 所以lim(x->x0-) f(x)cosx=[lim(x->x0-) f(x)] *[lim(x->x0-) cosx]=f(x0)cosx0 lim(x->x0+) f(x)cosx=[lim(x->x0+) f(x)] *[lim(x->x0+) cosx]=f(x0)cosx0 所以lim(x->x0-) f(x)cosx=lim(x->x0+) f(x)cosx=f(x0)cosx0
追问
??
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询